Turn prediction at generalized intersections

Bo Tang, S. Khokhar, Rakesh Gupta
{"title":"Turn prediction at generalized intersections","authors":"Bo Tang, S. Khokhar, Rakesh Gupta","doi":"10.1109/IVS.2015.7225911","DOIUrl":null,"url":null,"abstract":"Navigating a car at intersections is one of the most challenging parts of urban driving. Successful navigation needs predicting of intention of other traffic participants at the intersection. Such prediction is an important component for both Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) Systems. In this paper, we present a driver intention prediction model for general intersections. Our model incorporates lane-level maps of an intersection and makes a prediction based on past position and movement of the vehicle. We create a real-world dataset of 375 turning tracks at a variety of intersections. We present turn prediction results based on Hidden Markov Model (HMM), Support Vector Machine (SVM), and Dynamic Bayesian Network (DBN). SVM and DBN models give higher accuracy compared to HMM models. We get over 90% turn prediction accuracy 1.6 seconds before the intersection. Our work advances the state of art in ADAS/AD systems with a turn prediction model for general intersections.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Navigating a car at intersections is one of the most challenging parts of urban driving. Successful navigation needs predicting of intention of other traffic participants at the intersection. Such prediction is an important component for both Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) Systems. In this paper, we present a driver intention prediction model for general intersections. Our model incorporates lane-level maps of an intersection and makes a prediction based on past position and movement of the vehicle. We create a real-world dataset of 375 turning tracks at a variety of intersections. We present turn prediction results based on Hidden Markov Model (HMM), Support Vector Machine (SVM), and Dynamic Bayesian Network (DBN). SVM and DBN models give higher accuracy compared to HMM models. We get over 90% turn prediction accuracy 1.6 seconds before the intersection. Our work advances the state of art in ADAS/AD systems with a turn prediction model for general intersections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义交叉口的转弯预测
在十字路口驾驶汽车是城市驾驶中最具挑战性的部分之一。成功的导航需要预测十字路口其他交通参与者的意图。这种预测是高级驾驶辅助系统(ADAS)和自动驾驶系统(AD)的重要组成部分。本文提出了一种通用交叉口的驾驶员意图预测模型。我们的模型结合了十字路口的车道级地图,并根据车辆过去的位置和运动进行预测。我们在各种十字路口创建了一个包含375个转弯轨道的真实数据集。我们提出了基于隐马尔可夫模型(HMM)、支持向量机(SVM)和动态贝叶斯网络(DBN)的转弯预测结果。与HMM模型相比,SVM和DBN模型具有更高的精度。交叉口前1.6秒的转弯预测准确率达到90%以上。我们的工作推进了先进的ADAS/AD系统,为一般路口建立了转弯预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal parameter selection of a Model Predictive Control algorithm for energy efficient driving of heavy duty vehicles Map free lane following based on low-cost laser scanner for near future autonomous service vehicle Real-time small obstacle detection on highways using compressive RBM road reconstruction Developing a framework of Eco-Approach and Departure application for actuated signal control Face orientation estimation for driver monitoring with a single depth camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1