G. A. Rodes, J. Olmos, F. Karinou, Ioannis Roudas, Lei Deng, Xiaodan Pang, I. Monroy
{"title":"Optical switching for dynamic distribution of wireless-over-fiber signals","authors":"G. A. Rodes, J. Olmos, F. Karinou, Ioannis Roudas, Lei Deng, Xiaodan Pang, I. Monroy","doi":"10.1109/ONDM.2012.6210189","DOIUrl":null,"url":null,"abstract":"In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; the rest of the network was designed according to the channel distribution over the optical spectra required by the optical switch. An experimental validation was also conducted. The experiment consists of a four wavelength division multiplexed (WDM) channel system operating on a WiMax frequency band, and employing an orthogonal frequency-division multiplexing (OFDM) modulation at 625 Mbit/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a one-by-sixteen active optical switch. The results show a negligible power penalty on each channel, for both the best and the worst case in terms of inter-channel crosstalk.","PeriodicalId":151401,"journal":{"name":"2012 16th International Conference on Optical Network Design and Modelling (ONDM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Conference on Optical Network Design and Modelling (ONDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ONDM.2012.6210189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; the rest of the network was designed according to the channel distribution over the optical spectra required by the optical switch. An experimental validation was also conducted. The experiment consists of a four wavelength division multiplexed (WDM) channel system operating on a WiMax frequency band, and employing an orthogonal frequency-division multiplexing (OFDM) modulation at 625 Mbit/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a one-by-sixteen active optical switch. The results show a negligible power penalty on each channel, for both the best and the worst case in terms of inter-channel crosstalk.