A bark recognition algorithm for plant classification using a least square support vector machine

Luis J. Blaanco, C. Travieso-González, José M. Quinteiro, P. V. Hernández, M. Dutta, Anushikha Singh
{"title":"A bark recognition algorithm for plant classification using a least square support vector machine","authors":"Luis J. Blaanco, C. Travieso-González, José M. Quinteiro, P. V. Hernández, M. Dutta, Anushikha Singh","doi":"10.1109/IC3.2016.7880233","DOIUrl":null,"url":null,"abstract":"In this paper, a bark recognition algorithm for plant classification is presented. A Least-Square Support Vector Machine (LSSVM) with image and data processing techniques is used to implement a general purpose automated classifier. Using a data base of 40 sections of photographs taken of each of the 23 species, we applied an algorithm to homogenize the illumination of the images. After applying it, we obtained a 256-elements array from the Local Binary Pattern (LBP) histogram. Each element of the array was introduced in the LSSVM for classification. The success rate of the resultant recognizer is 82.38%.","PeriodicalId":294210,"journal":{"name":"2016 Ninth International Conference on Contemporary Computing (IC3)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Ninth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2016.7880233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a bark recognition algorithm for plant classification is presented. A Least-Square Support Vector Machine (LSSVM) with image and data processing techniques is used to implement a general purpose automated classifier. Using a data base of 40 sections of photographs taken of each of the 23 species, we applied an algorithm to homogenize the illumination of the images. After applying it, we obtained a 256-elements array from the Local Binary Pattern (LBP) histogram. Each element of the array was introduced in the LSSVM for classification. The success rate of the resultant recognizer is 82.38%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最小二乘支持向量机的树皮识别算法
本文提出了一种用于植物分类的树皮识别算法。结合图像和数据处理技术,采用最小二乘支持向量机(LSSVM)实现通用的自动分类器。我们使用了一个包含23个物种中每一个物种的40张照片的数据库,应用了一种算法来均匀化图像的照明。应用后,我们从局部二进制模式(LBP)直方图中得到了一个256个元素的数组。在LSSVM中引入数组的每个元素进行分类。所得识别器的识别率为82.38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intuitionistic fuzzy ant colony optimization for course sequencing in E-learning JIIT-edu: An android application for college faculty Exploring academia industry linkage through co-authorship social networks Framework to extract context vectors from unstructured data using big data analytics Temperature and energy aware scheduling of heterogeneous processors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1