Detection of Synthesized Satellite Images Using Deep Neural Networks

W. Liao, Yi-Shan Chang, Yi-Chieh Wu
{"title":"Detection of Synthesized Satellite Images Using Deep Neural Networks","authors":"W. Liao, Yi-Shan Chang, Yi-Chieh Wu","doi":"10.1109/IMCOM56909.2023.10035570","DOIUrl":null,"url":null,"abstract":"The technology of generative adversarial networks (GAN) is constantly evolving, and synthesized images can no longer be accurately distinguished by the human eyes alone. GAN has been applied to the analysis of satellite images, mostly for the purpose of data augmentation. Recently, however, we have seen a twist in its usage. In information warfare, GAN has been used to create fake satellite images or modify the image content by putting fake bridges, buildings and clouds to mislead or conceal important intelligence. To address the increasing counterfeit cases in satellite images, the goal of this research is to develop algorithms that can classify fake remote sensing images robustly and efficiently. There exist many techniques to synthesize or manipulate the content of satellite images. In this paper, we focus on the case when the entire image is forged. Three satellite image synthesis methods, including ProGAN, cGAN and CycleGAN will be investigated. The effect of image pre-processing such as histogram equalization and bilateral filter will also be evaluated. Experiments show that satellite images generated by different GANs can be easily identified by individually trained models. The performance degraded when model trained with one type of GAN samples is employed to determine the originality of images synthesized with other types of GANs. Additionally, when histogram equalization is applied to the images, the detection model fails to distinguish its authenticity. A four-class universal classification model is proposed to address this issue. An overall accuracy of over 99% has been achieved even when pre-processing has been applied.","PeriodicalId":230213,"journal":{"name":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM56909.2023.10035570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The technology of generative adversarial networks (GAN) is constantly evolving, and synthesized images can no longer be accurately distinguished by the human eyes alone. GAN has been applied to the analysis of satellite images, mostly for the purpose of data augmentation. Recently, however, we have seen a twist in its usage. In information warfare, GAN has been used to create fake satellite images or modify the image content by putting fake bridges, buildings and clouds to mislead or conceal important intelligence. To address the increasing counterfeit cases in satellite images, the goal of this research is to develop algorithms that can classify fake remote sensing images robustly and efficiently. There exist many techniques to synthesize or manipulate the content of satellite images. In this paper, we focus on the case when the entire image is forged. Three satellite image synthesis methods, including ProGAN, cGAN and CycleGAN will be investigated. The effect of image pre-processing such as histogram equalization and bilateral filter will also be evaluated. Experiments show that satellite images generated by different GANs can be easily identified by individually trained models. The performance degraded when model trained with one type of GAN samples is employed to determine the originality of images synthesized with other types of GANs. Additionally, when histogram equalization is applied to the images, the detection model fails to distinguish its authenticity. A four-class universal classification model is proposed to address this issue. An overall accuracy of over 99% has been achieved even when pre-processing has been applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的合成卫星图像检测
摘要生成对抗网络(GAN)技术在不断发展,人工合成的图像已不能单靠人眼准确识别。GAN已经应用于卫星图像的分析,主要是为了增强数据。然而,最近我们看到它的用法发生了变化。在信息战中,GAN被用于制造假卫星图像或通过放置假的桥梁、建筑物和云来修改图像内容,以误导或隐瞒重要情报。为了解决卫星图像中越来越多的伪造案例,本研究的目标是开发能够鲁棒有效地对伪造遥感图像进行分类的算法。目前存在许多合成或操纵卫星图像内容的技术。本文主要研究了整幅图像被伪造的情况。研究了ProGAN、cGAN和CycleGAN三种卫星图像合成方法。对直方图均衡化和双边滤波等图像预处理的效果也进行了评价。实验表明,不同gan生成的卫星图像可以通过单独训练的模型轻松识别。当使用一种GAN样本训练的模型来确定由其他类型GAN合成的图像的原创性时,性能会下降。此外,当对图像进行直方图均衡化时,检测模型无法区分其真实性。为了解决这一问题,提出了一个四类通用分类模型。即使进行了预处理,总体精度也达到了99%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightweight energy-efficient offloading framework for mobile edge/cloud computing Dual ResNet-based Environmental Sound Classification using GAN Finite Element Method for System-in-Package (SiP) Technology: Thermal Analysis Using Chip Cooling Laminate Chip (CCLC) An Improved Reverse Distillation Model for Unsupervised Anomaly Detection Pictorial Map Generation based on Color Extraction and Sentiment Analysis using SNS Photos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1