Suppression and detection of impulse type interference using adaptive median hybrid filters

A. Nieminen, P. Heinonen, Y. Neuvo
{"title":"Suppression and detection of impulse type interference using adaptive median hybrid filters","authors":"A. Nieminen, P. Heinonen, Y. Neuvo","doi":"10.1109/ICASSP.1987.1169749","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new type of nonlinear filters, the Adaptive Median Hybrid (AMH) filters, for the suppression and detection of short duration interferences. In the AMH filters, adaptive filter substructures are used to estimate the current signal value from the future and past signal values. The output of the overall filter is the median of the adaptive filter outputs and the current signal value. This kind of nonlinear filter structure is shown to adapt and preserve rapid changes in signal characteristics well. However, it filters out short duration interferences. By examining the difference between the original and filtered data, interferences can be detected. We introduce two types of AMH filters, the AMH filter with separate adaptive substructures (SAMH) and the AMH filter with coupled substructures (CAMH), which have different convergence properties and implementation. We use both synthetic and real data (speech and electroencephalogram (EEG)) to show the applicability of the proposed filters.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we introduce a new type of nonlinear filters, the Adaptive Median Hybrid (AMH) filters, for the suppression and detection of short duration interferences. In the AMH filters, adaptive filter substructures are used to estimate the current signal value from the future and past signal values. The output of the overall filter is the median of the adaptive filter outputs and the current signal value. This kind of nonlinear filter structure is shown to adapt and preserve rapid changes in signal characteristics well. However, it filters out short duration interferences. By examining the difference between the original and filtered data, interferences can be detected. We introduce two types of AMH filters, the AMH filter with separate adaptive substructures (SAMH) and the AMH filter with coupled substructures (CAMH), which have different convergence properties and implementation. We use both synthetic and real data (speech and electroencephalogram (EEG)) to show the applicability of the proposed filters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自适应中值混合滤波器抑制和检测脉冲型干扰
本文介绍了一种用于抑制和检测短持续时间干扰的新型非线性滤波器——自适应中值混合滤波器(AMH)。在AMH滤波器中,自适应滤波器子结构用于从未来和过去信号值估计当前信号值。整体滤波器的输出是自适应滤波器输出和当前信号值的中值。这种非线性滤波器结构能很好地适应和保持信号特性的快速变化。然而,它过滤掉短时间的干扰。通过检查原始数据和过滤后的数据之间的差异,可以检测到干扰。介绍了两种具有不同收敛特性和实现方法的AMH滤波器,分别是具有独立自适应子结构的AMH滤波器(SAMH)和具有耦合子结构的AMH滤波器(CAMH)。我们使用合成数据和真实数据(语音和脑电图)来证明所提出滤波器的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1