{"title":"Efficient discriminative training of long-span language models","authors":"A. Rastrow, Mark Dredze, S. Khudanpur","doi":"10.1109/ASRU.2011.6163933","DOIUrl":null,"url":null,"abstract":"Long-span language models, such as those involving syntactic dependencies, produce more coherent text than their n-gram counterparts. However, evaluating the large number of sentence-hypotheses in a packed representation such as an ASR lattice is intractable under such long-span models both during decoding and discriminative training. The accepted compromise is to rescore only the N-best hypotheses in the lattice using the long-span LM. We present discriminative hill climbing, an efficient and effective discriminative training procedure for long-span LMs based on a hill climbing rescoring algorithm [1]. We empirically demonstrate significant computational savings as well as error-rate reduction over N-best training methods in a state of the art ASR system for Broadcast News transcription.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Long-span language models, such as those involving syntactic dependencies, produce more coherent text than their n-gram counterparts. However, evaluating the large number of sentence-hypotheses in a packed representation such as an ASR lattice is intractable under such long-span models both during decoding and discriminative training. The accepted compromise is to rescore only the N-best hypotheses in the lattice using the long-span LM. We present discriminative hill climbing, an efficient and effective discriminative training procedure for long-span LMs based on a hill climbing rescoring algorithm [1]. We empirically demonstrate significant computational savings as well as error-rate reduction over N-best training methods in a state of the art ASR system for Broadcast News transcription.