What is Real or Fake?-Machine Learning Approaches for Rumor Verification using Stance CIassification

Paulo Roberto da Cordeiro, V. Pinheiro, Ronaldo S. Moreira, Cecilia Carvalho, Livio Freire
{"title":"What is Real or Fake?-Machine Learning Approaches for Rumor Verification using Stance CIassification","authors":"Paulo Roberto da Cordeiro, V. Pinheiro, Ronaldo S. Moreira, Cecilia Carvalho, Livio Freire","doi":"10.1145/3350546.3352562","DOIUrl":null,"url":null,"abstract":"In a recent survey, over half (54%) of a global sample agree or strongly agree that they are concerned about what is real and fake when thinking about online news. Rumors are spreading all the time and affect people’s perceptions and behavior. In this paper, we apply several machine learning approaches, from simple supervised algorithms to deep learning models, for the stance classification and rumor verification tasks; and evaluate the impact of the stance information in the performance of rumor veracity evaluation. According to the results, the traditional machine learning algorithms presented better performance than deep learning models, in both tasks, and the information of stance (deny or query) do not improve the results of the rumor verification task. CCS CONCEPTS • Networks → Social media networks • Human-centered computing → Social media • Computing methodologies → Natural language processing.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In a recent survey, over half (54%) of a global sample agree or strongly agree that they are concerned about what is real and fake when thinking about online news. Rumors are spreading all the time and affect people’s perceptions and behavior. In this paper, we apply several machine learning approaches, from simple supervised algorithms to deep learning models, for the stance classification and rumor verification tasks; and evaluate the impact of the stance information in the performance of rumor veracity evaluation. According to the results, the traditional machine learning algorithms presented better performance than deep learning models, in both tasks, and the information of stance (deny or query) do not improve the results of the rumor verification task. CCS CONCEPTS • Networks → Social media networks • Human-centered computing → Social media • Computing methodologies → Natural language processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
什么是真假?-基于姿态分类的谣言验证机器学习方法
在最近的一项调查中,超过一半(54%)的全球样本同意或强烈同意,他们在考虑在线新闻时关心真假。谣言每时每刻都在传播,影响着人们的认知和行为。在本文中,我们应用了几种机器学习方法,从简单的监督算法到深度学习模型,用于立场分类和谣言验证任务;并评价立场信息对谣言真实性评价的影响。结果表明,传统的机器学习算法在这两个任务中都表现出比深度学习模型更好的性能,而立场信息(否认或查询)并没有改善谣言验证任务的结果。CCS概念•网络→社交媒体网络•以人为中心的计算→社交媒体•计算方法→自然语言处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Issue Recommendation for Open Source Communities Exploring Differences in the Impact of Users’ Traces on Arabic and English Facebook Search Design and implementation of an open source Greek POS Tagger and Entity Recognizer using spaCy Extracting Ego-Centric Social Networks from Linked Open Data Towards an End-User Layer for Data Integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1