Tools for multitemporal analysis and classification of multisource satellite imagery

A. Masse, D. Ducrot, P. Marthon
{"title":"Tools for multitemporal analysis and classification of multisource satellite imagery","authors":"A. Masse, D. Ducrot, P. Marthon","doi":"10.1109/MULTI-TEMP.2011.6005085","DOIUrl":null,"url":null,"abstract":"As acquisition technology progresses, remote sensing data contains an ever increasing amount of information. Future projects in remote sensing will give high repeatability of acquisition like Venμs (CNES1) which may provide data every 2 days with a resolution of 5.3 meters on 12 bands (420nm–900nm) and Sentinel−2 (ESA) 13 bands, 10–60m resolution and 5 days. With such data, process automation appears crucial. For that purpose, we develop several algorithms to automate image processing (classification, segmentation, interpretation, etc.). In this paper, we present an algorithm of automatic analysis which selects the best dataset of dates maximizing classification quality indices. We create two indices to evaluate jointly accuracy and precision. We present tests performed on Formosat-2 images which are similar to Venμs and Sentinel−2 for temporal repetitiveness. These tests allow validating the presented process for temporal discrimination improvement.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

As acquisition technology progresses, remote sensing data contains an ever increasing amount of information. Future projects in remote sensing will give high repeatability of acquisition like Venμs (CNES1) which may provide data every 2 days with a resolution of 5.3 meters on 12 bands (420nm–900nm) and Sentinel−2 (ESA) 13 bands, 10–60m resolution and 5 days. With such data, process automation appears crucial. For that purpose, we develop several algorithms to automate image processing (classification, segmentation, interpretation, etc.). In this paper, we present an algorithm of automatic analysis which selects the best dataset of dates maximizing classification quality indices. We create two indices to evaluate jointly accuracy and precision. We present tests performed on Formosat-2 images which are similar to Venμs and Sentinel−2 for temporal repetitiveness. These tests allow validating the presented process for temporal discrimination improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多源卫星图像的多时相分析和分类工具
随着采集技术的进步,遥感数据所包含的信息量越来越大。未来的遥感项目将提供高重复性的采集,如Venμs (CNES1)可以在12个波段(420nm-900nm)上每2天提供一次分辨率为5.3米的数据,Sentinel - 2 (ESA)可以在13个波段,10-60m分辨率和5天提供数据。有了这些数据,流程自动化显得至关重要。为此,我们开发了几种算法来自动化图像处理(分类、分割、解释等)。本文提出了一种自动分析数据集的算法,该算法选取最佳的数据集,使分类质量指标最大化。我们创建了两个指标来共同评价准确度和精密度。我们提出了在类似于Venμs和Sentinel -2的Formosat-2图像上进行的时间重复性测试。这些测试允许验证提出的过程,以改善时间歧视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring a fuzzy object: The case of Lake Naivasha Greenland inland ice melt-off: Analysis of global gravity data from the GRACE satellites Effects of multitemporal scene changes on pansharpening fusion Quantification of LAI interannual anomalies by adjusting climatological patterns Analysis of LULC changes and urban expansion of the resort city of Al Ain using remote sensing and GIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1