S. Li, Guangji Huang, Xing Xu, Yang Yang, Fumin Shen
{"title":"Accelerated Sign Hunter: A Sign-based Black-box Attack via Branch-Prune Strategy and Stabilized Hierarchical Search","authors":"S. Li, Guangji Huang, Xing Xu, Yang Yang, Fumin Shen","doi":"10.1145/3512527.3531399","DOIUrl":null,"url":null,"abstract":"We propose the Accelerated Sign Hunter (ASH), a sign-based black-box attack under l∞ constraint. The proposed method searches an approximate gradient sign of loss w.r.t. the input image with few queries to the target model and crafts the adversarial example by updating the input image in this direction. It applies a Branch-Prune Strategy that infers the unknown sign bits according to the checked ones to avoid unnecessary queries. It also adopts a Stabilized Hierarchical Search to achieve better performance within a limited query budget. We provide a theoretical proof showing that the Accelerated Sign Hunter halves the queries without dropping the attack success rate (SR) compared with the state-of-the-art sign-based black-box attack. Extensive experiments also demonstrate the superiority of our ASH method over other black-box attacks. In particular on Inception-v3 for ImageNet, our method achieves the SR of 0.989 with an average queries of 338.56, which is 1/4 fewer than that of the state-of-the-art sign-based attack to achieve the same SR. Moreover, our ASH method is out-of-the-box since there are no hyperparameters that need to be tuned.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose the Accelerated Sign Hunter (ASH), a sign-based black-box attack under l∞ constraint. The proposed method searches an approximate gradient sign of loss w.r.t. the input image with few queries to the target model and crafts the adversarial example by updating the input image in this direction. It applies a Branch-Prune Strategy that infers the unknown sign bits according to the checked ones to avoid unnecessary queries. It also adopts a Stabilized Hierarchical Search to achieve better performance within a limited query budget. We provide a theoretical proof showing that the Accelerated Sign Hunter halves the queries without dropping the attack success rate (SR) compared with the state-of-the-art sign-based black-box attack. Extensive experiments also demonstrate the superiority of our ASH method over other black-box attacks. In particular on Inception-v3 for ImageNet, our method achieves the SR of 0.989 with an average queries of 338.56, which is 1/4 fewer than that of the state-of-the-art sign-based attack to achieve the same SR. Moreover, our ASH method is out-of-the-box since there are no hyperparameters that need to be tuned.