Multifunctional ISO Standard Dialogue Act Tagging in Italian

G. Roccabruna, Alessandra Cervone, G. Riccardi
{"title":"Multifunctional ISO Standard Dialogue Act Tagging in Italian","authors":"G. Roccabruna, Alessandra Cervone, G. Riccardi","doi":"10.4000/books.aaccademia.8860","DOIUrl":null,"url":null,"abstract":"English. The task of Dialogue Act (DA) tagging, a crucial component in many conversational agents, is often addressed assuming a single DA per speaker turn in the conversation. However, speakers’ turns are often multifunctional, that is they can contain more than one DA (i.e. “I’m Alex. Have we met before?” contains a ‘state-ment’, followed by a ‘question’). This work focuses on multifunctional DA tagging in Italian. First, we present iLIS-TEN2ISO, a novel resource with multi-functional DA annotation in Italian, created by annotating the iLISTEN corpus with the ISO standard. We provide an analysis of the corpus showing the importance of multifunctionality for DA tagging. Additionally, we train DA taggers for Italian on iLISTEN (achieving State of the Art results) and iLISTEN2ISO. Our findings indicate the importance of using a multifunctional approach for DA tagging.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

English. The task of Dialogue Act (DA) tagging, a crucial component in many conversational agents, is often addressed assuming a single DA per speaker turn in the conversation. However, speakers’ turns are often multifunctional, that is they can contain more than one DA (i.e. “I’m Alex. Have we met before?” contains a ‘state-ment’, followed by a ‘question’). This work focuses on multifunctional DA tagging in Italian. First, we present iLIS-TEN2ISO, a novel resource with multi-functional DA annotation in Italian, created by annotating the iLISTEN corpus with the ISO standard. We provide an analysis of the corpus showing the importance of multifunctionality for DA tagging. Additionally, we train DA taggers for Italian on iLISTEN (achieving State of the Art results) and iLISTEN2ISO. Our findings indicate the importance of using a multifunctional approach for DA tagging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意大利语中多功能ISO标准对话行为标注
英语。对话行为(DA)标记任务是许多会话代理中的一个重要组成部分,通常在会话中假设每个说话人都有一个DA。然而,演讲者的回合通常是多功能的,也就是说,他们可以包含多个DA(例如,“我是Alex。我们以前见过面吗?包含一个“陈述”,后面跟着一个“疑问”)。本文主要研究意大利语的多功能数据提取标注。首先,我们提出了iLIS-TEN2ISO,这是一个具有意大利语多功能数据数据注释的新资源,它是通过用ISO标准注释iLISTEN语料库而创建的。我们提供了一个语料库的分析,显示了多功能性对DA标记的重要性。此外,我们在iLISTEN和iLISTEN2ISO上为意大利语训练数据标注器(达到最先进的结果)。我们的研究结果表明,使用多功能方法进行DA标记的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Case Study of Natural Gender Phenomena in Translation. A Comparison of Google Translate, Bing Microsoft Translator and DeepL for English to Italian, French and Spanish How Granularity of Orthography-Phonology Mappings Affect Reading Development: Evidence from a Computational Model of English Word Reading and Spelling Creativity Embedding: A Vector to Characterise and Classify Plausible Triples in Deep Learning NLP Models (Stem and Word) Predictability in Italian Verb Paradigms: An Entropy-Based Study Exploiting the New Resource LeFFI Dialog-based Help Desk through Automated Question Answering and Intent Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1