Pulverizing system fault diagnosis based on least square support vector machine

Song M. Jiao
{"title":"Pulverizing system fault diagnosis based on least square support vector machine","authors":"Song M. Jiao","doi":"10.1109/CCSSE.2016.7784397","DOIUrl":null,"url":null,"abstract":"Least square support vector machine is an excellent algorithm which can be used to model and classify. If appropriate mapping functions and parameters are selected, the result should be better. An improved particle swarm optimization with changeable inertia parameter and velocity weight is present and then it is used to search better parameter to optimize support vector machine which are used to diagnose faults existed in coal powder producing process. Simulation results show that the improved PSO has higher search precision and global search ability and the faults diagnosis algorithm coupled PSO and LS-SVM has higher diagnosis accuracy rate. This diagnosis is reasonable and applicable.","PeriodicalId":136809,"journal":{"name":"2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCSSE.2016.7784397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Least square support vector machine is an excellent algorithm which can be used to model and classify. If appropriate mapping functions and parameters are selected, the result should be better. An improved particle swarm optimization with changeable inertia parameter and velocity weight is present and then it is used to search better parameter to optimize support vector machine which are used to diagnose faults existed in coal powder producing process. Simulation results show that the improved PSO has higher search precision and global search ability and the faults diagnosis algorithm coupled PSO and LS-SVM has higher diagnosis accuracy rate. This diagnosis is reasonable and applicable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最小二乘支持向量机的制粉系统故障诊断
最小二乘支持向量机是一种很好的建模和分类算法。如果选择合适的映射函数和参数,效果会更好。提出了一种改变惯性参数和速度权值的改进粒子群优化方法,并利用该方法搜索更好的参数来优化支持向量机,用于煤粉生产过程故障诊断。仿真结果表明,改进粒子群算法具有更高的搜索精度和全局搜索能力,粒子群算法与LS-SVM相结合的故障诊断算法具有更高的诊断准确率。这种诊断是合理和适用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy logic controller design for intelligent air-conditioning system Design of multi-point wireless multifunction monitoring system based on Android Link weights-based ANT colony routing algorithm for wireless sensor networks Study on control method of activated sludge sewage treatment system Adaptive sliding mode control for a vehicle steer-by-wire system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1