Intelligent Backstepping Control of Synchronous Reluctance Motor Drive System

F. Lin, Shih-Gang Chen, Che-Wei Hsu
{"title":"Intelligent Backstepping Control of Synchronous Reluctance Motor Drive System","authors":"F. Lin, Shih-Gang Chen, Che-Wei Hsu","doi":"10.1109/CACS.2018.8606767","DOIUrl":null,"url":null,"abstract":"An intelligent backstepping control (BSC) using recurrent feature selection fuzzy neural network (RFSFNN) is proposed to construct a high-performance synchronous reluctance motor (SRM) position drive system. First, the dynamics of the SRM position drive system and the BSC are briefly introduced. However, the lumped uncertainty of the SRM is unavailable to obtain in advance. Therefore, an intelligent backstepping control using recurrent feature selection fuzzy neural network (IBSCRFSFNN), which combines the advantages of recurrent neural network, fuzzy logic system and feature selection method, is developed to approximate an idea BSC and to maintain the stability of SRM position drive system. The network structure and online learning algorithm of the IBSCRFSFNN are described in detail. At last, the proposed control system is implemented in a floating-point TMS320F28075 digital signal processor. The experimental results are illustrated to show the validity of the proposed intelligent BSC system.","PeriodicalId":282633,"journal":{"name":"2018 International Automatic Control Conference (CACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS.2018.8606767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An intelligent backstepping control (BSC) using recurrent feature selection fuzzy neural network (RFSFNN) is proposed to construct a high-performance synchronous reluctance motor (SRM) position drive system. First, the dynamics of the SRM position drive system and the BSC are briefly introduced. However, the lumped uncertainty of the SRM is unavailable to obtain in advance. Therefore, an intelligent backstepping control using recurrent feature selection fuzzy neural network (IBSCRFSFNN), which combines the advantages of recurrent neural network, fuzzy logic system and feature selection method, is developed to approximate an idea BSC and to maintain the stability of SRM position drive system. The network structure and online learning algorithm of the IBSCRFSFNN are described in detail. At last, the proposed control system is implemented in a floating-point TMS320F28075 digital signal processor. The experimental results are illustrated to show the validity of the proposed intelligent BSC system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同步磁阻电机驱动系统的智能反步控制
提出了一种基于递归特征选择模糊神经网络(RFSFNN)的智能反步控制(BSC),用于构建高性能同步磁阻电机(SRM)位置驱动系统。首先,简要介绍了SRM位置驱动系统和平衡计分卡的动力学特性。然而,SRM的集总不确定性是无法提前获得的。为此,结合递归神经网络、模糊逻辑系统和特征选择方法的优点,提出了一种基于递归特征选择模糊神经网络(IBSCRFSFNN)的智能反步控制方法,以逼近BSC思想并保持SRM位置驱动系统的稳定性。详细介绍了IBSCRFSFNN的网络结构和在线学习算法。最后,在TMS320F28075浮点数字信号处理器上实现了该控制系统。实验结果验证了该智能平衡计分卡系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of PD (Proportional Derivative) Control System On Six-Legged Wall Follower Robot A Wireless Control Mobile Hoist System The robot for recycling based on machine learning Object Transportation Using Networked Mobile Manipulators without Force/Torque Sensors A Method for Finding the Routes of Mazes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1