Detection of local anomalies in high resolution hyperspectral imagery using geostatistical filtering and local spatial statistics

P. Goovaerts, G. Jacquez, A. Warner, B. Crabtree, Andrew H. Marcus
{"title":"Detection of local anomalies in high resolution hyperspectral imagery using geostatistical filtering and local spatial statistics","authors":"P. Goovaerts, G. Jacquez, A. Warner, B. Crabtree, Andrew H. Marcus","doi":"10.1109/WARSD.2003.1295219","DOIUrl":null,"url":null,"abstract":"This paper describes a methodology to detect local anomalies in high resolution hyperspectral imagery, which involves successively a multivariate statistical analysis (PCA) of all spectral bands, a geostatistical filtering of noise and regional background in the first principal components using factorial kriging, and finally the computation of a local indicator of spatial autocorrelation to detect local clusters of high or low reflectance values as well as anomalies. A case study illustrates the ability of the filtering procedure to reduce the proportion of false alarms, and its robustness under low signal to noise ratios. By leveraging both spectral and spatial information, the technique requires little or no input from the user, and hence can be readily automated.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper describes a methodology to detect local anomalies in high resolution hyperspectral imagery, which involves successively a multivariate statistical analysis (PCA) of all spectral bands, a geostatistical filtering of noise and regional background in the first principal components using factorial kriging, and finally the computation of a local indicator of spatial autocorrelation to detect local clusters of high or low reflectance values as well as anomalies. A case study illustrates the ability of the filtering procedure to reduce the proportion of false alarms, and its robustness under low signal to noise ratios. By leveraging both spectral and spatial information, the technique requires little or no input from the user, and hence can be readily automated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于地统计滤波和局部空间统计的高分辨率高光谱图像局部异常检测
本文介绍了一种检测高分辨率高光谱图像局部异常的方法,该方法包括对所有光谱波段进行多元统计分析(PCA),利用因子克里格法对第一主成分中的噪声和区域背景进行地统计滤波,最后计算空间自相关的局部指标来检测高或低反射率值的局部簇以及异常。实例研究表明,该滤波方法具有降低误报率的能力,并且在低信噪比下具有鲁棒性。通过利用光谱和空间信息,该技术需要很少或不需要用户输入,因此可以很容易地实现自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A residual-based approach to classification of remote sensing images Operational segmentation and classification of SAR sea ice imagery The spectral similarity scale and its application to the classification of hyperspectral remote sensing data Further results on AMM for endmember induction Spatial/Spectral analysis of hyperspectral image data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1