{"title":"Replacement Policies for a Function-Based Instruction Memory: A Quantification of the Impact on Hardware Complexity and WCET Estimates","authors":"Stefan Metzlaff, T. Ungerer","doi":"10.1109/ECRTS.2012.22","DOIUrl":null,"url":null,"abstract":"Instruction memories have a large influence on the timing behavior of hard real-time systems. Thus, to obtain safe and tight WCET estimates the instruction memory has to be predictable. Instruction memories in embedded real-time systems range from scratchpads with fixed content to dynamically managed fine-grained caches. In this paper we focus on a function-based dynamic instruction memory (D-ISP) and examine different replacement policies. We show their influence on the timing behavior of a hard real-time system and the complexity of a hardware implementation. A timing analysis unveils that a stack-based replacement policy reaches similar WCET estimates as LRU, especially for small scratchpad sizes. But in contrast to the stack-based replacement policy, LRU cannot be implemented with a reasonable amount of resources. Whereas, an experimental implementation of the proposed stack-based replacement policy needs only up to 23% more resources than a FIFO implementation.","PeriodicalId":425794,"journal":{"name":"2012 24th Euromicro Conference on Real-Time Systems","volume":"65 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECRTS.2012.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Instruction memories have a large influence on the timing behavior of hard real-time systems. Thus, to obtain safe and tight WCET estimates the instruction memory has to be predictable. Instruction memories in embedded real-time systems range from scratchpads with fixed content to dynamically managed fine-grained caches. In this paper we focus on a function-based dynamic instruction memory (D-ISP) and examine different replacement policies. We show their influence on the timing behavior of a hard real-time system and the complexity of a hardware implementation. A timing analysis unveils that a stack-based replacement policy reaches similar WCET estimates as LRU, especially for small scratchpad sizes. But in contrast to the stack-based replacement policy, LRU cannot be implemented with a reasonable amount of resources. Whereas, an experimental implementation of the proposed stack-based replacement policy needs only up to 23% more resources than a FIFO implementation.