Data structures for information retrieval

D. L. Nkweteyim
{"title":"Data structures for information retrieval","authors":"D. L. Nkweteyim","doi":"10.1109/ISTAFRICA.2014.6880643","DOIUrl":null,"url":null,"abstract":"The process of efficiently indexing large document collections for information retrieval places large demands on a computer's memory and processor, and requires judicious use of these resources. In this paper, we describe our approach to constructing such an index based on the vector-space model (VSM). We review the stages involved in generating an index, for weighting the index terms, and for representing documents in the VSM. We explain our choice of data structures from the parsing of the document collection through the generation of index terms, to generation of document representations. We explain tradeoffs in our choice of data structures. We then demonstrate the approach using the OHSUMED data set. Our results show that even with only a modest amount of main memory (4 GB), large data sets such as the OHSUMED data set can be quickly indexed.","PeriodicalId":248893,"journal":{"name":"2014 IST-Africa Conference Proceedings","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IST-Africa Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTAFRICA.2014.6880643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The process of efficiently indexing large document collections for information retrieval places large demands on a computer's memory and processor, and requires judicious use of these resources. In this paper, we describe our approach to constructing such an index based on the vector-space model (VSM). We review the stages involved in generating an index, for weighting the index terms, and for representing documents in the VSM. We explain our choice of data structures from the parsing of the document collection through the generation of index terms, to generation of document representations. We explain tradeoffs in our choice of data structures. We then demonstrate the approach using the OHSUMED data set. Our results show that even with only a modest amount of main memory (4 GB), large data sets such as the OHSUMED data set can be quickly indexed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于信息检索的数据结构
为信息检索有效地索引大型文档集合的过程对计算机的内存和处理器提出了很大的要求,并且需要明智地使用这些资源。在本文中,我们描述了基于向量空间模型(VSM)构建这样一个索引的方法。我们回顾了生成索引、对索引项进行加权以及在VSM中表示文档所涉及的各个阶段。我们解释了我们对数据结构的选择,从解析文档集合到生成索引项,再到生成文档表示。我们将解释在选择数据结构时的权衡。然后,我们使用OHSUMED数据集演示该方法。我们的结果表明,即使只有少量的主内存(4 GB),大型数据集(如OHSUMED数据集)也可以快速地建立索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring three approaches to offer distance learning courses through a social network of health researchers in three African countries Streamlining capacity development for employment Understanding the maturity of EU code of conduct on data centres: A Mauritian case study explained User willingness to accept friend requests on SNS: A facebook experiment An open speaker recognition enabled identification and authentication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1