Accelerating Large-Scale HPC Applications Using FPGAs

R. Dimond, S. Racanière, O. Pell
{"title":"Accelerating Large-Scale HPC Applications Using FPGAs","authors":"R. Dimond, S. Racanière, O. Pell","doi":"10.1109/ARITH.2011.34","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Arrays (FPGAs) are conventionally considered as 'glue-logic'. However, modern FPGAs are extremely competitive compared to state-of-the-art CPUs for commercial HPC workloads, such as those found in Oil and Gas and Finance. For example, an FPGA accelerated system can be 31-37 times faster than an equivalently sized conventional machine, and consume 1/39 of the power. The key to achieving the best performance in FPGA accelerators, while maintaining correctness, is optimization of arithmetic units and data types to suit the range/precision at each point in the computation. The flexibility of the FPGA to implement non-standard arithmetic, combined with a data-flow programming model that instantiates a separate unit for each arithmetic operator in the code provides a wide design space. As such, FPGA computing offers significant opportunity for arithmetic research into 'large scale' HPC applications, where there is an opportunity to move away from standard IEEE formats, either to improve precision compared to the CPU version or to increase speed.","PeriodicalId":272151,"journal":{"name":"2011 IEEE 20th Symposium on Computer Arithmetic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Field Programmable Gate Arrays (FPGAs) are conventionally considered as 'glue-logic'. However, modern FPGAs are extremely competitive compared to state-of-the-art CPUs for commercial HPC workloads, such as those found in Oil and Gas and Finance. For example, an FPGA accelerated system can be 31-37 times faster than an equivalently sized conventional machine, and consume 1/39 of the power. The key to achieving the best performance in FPGA accelerators, while maintaining correctness, is optimization of arithmetic units and data types to suit the range/precision at each point in the computation. The flexibility of the FPGA to implement non-standard arithmetic, combined with a data-flow programming model that instantiates a separate unit for each arithmetic operator in the code provides a wide design space. As such, FPGA computing offers significant opportunity for arithmetic research into 'large scale' HPC applications, where there is an opportunity to move away from standard IEEE formats, either to improve precision compared to the CPU version or to increase speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用fpga加速大规模HPC应用
现场可编程门阵列(fpga)通常被认为是“粘合逻辑”。然而,与用于商业高性能计算工作负载的最先进的cpu相比,现代fpga极具竞争力,例如石油和天然气和金融领域的cpu。例如,FPGA加速系统可以比同等大小的传统机器快31-37倍,并且消耗1/39的功率。在保持正确性的同时,在FPGA加速器中实现最佳性能的关键是优化算术单元和数据类型,以适应计算中每个点的范围/精度。FPGA实现非标准算术的灵活性,结合数据流编程模型,为代码中的每个算术运算符实例化一个单独的单元,提供了广泛的设计空间。因此,FPGA计算为“大规模”HPC应用的算法研究提供了重要的机会,在这些应用中,有机会摆脱标准的IEEE格式,要么提高与CPU版本相比的精度,要么提高速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fused Multiply-Add Microarchitecture Comprising Separate Early-Normalizing Multiply and Add Pipelines A 1.5 Ghz VLIW DSP CPU with Integrated Floating Point and Fixed Point Instructions in 40 nm CMOS Flocq: A Unified Library for Proving Floating-Point Algorithms in Coq Teraflop FPGA Design Self Checking in Current Floating-Point Units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1