A CONTEXT-INTEGRATING SIGNAL CLASSIFICATION MODEL FOR RESOLVING AMBIGUOUS STIMULI

Rajesh Amerineni, L. Gupta, Resh S. Gupta
{"title":"A CONTEXT-INTEGRATING SIGNAL CLASSIFICATION MODEL FOR RESOLVING AMBIGUOUS STIMULI","authors":"Rajesh Amerineni, L. Gupta, Resh S. Gupta","doi":"10.1109/GlobalSIP.2018.8646628","DOIUrl":null,"url":null,"abstract":"The brain uses contextual information to uniquely resolve the interpretation of ambiguous stimuli. An interdisciplinary effort which combines expertise in machine learning and neuroscience is used to formulate a generalized signal classification model that has the ability to integrate weighted bidirectional temporal or spatial context to effectively resolve the classification of ambiguous stimuli. The formulation of the model is quite general; consequently, it is not restricted to stimuli in any particular sensory modality nor to any type of classifier. Furthermore, the model parameters can be manipulated to simulate various context environments. The context-integrating model is implemented using a Gaussian multivariate classifier and a broad range of experiments are designed to demonstrate its effectiveness in classifying ambiguous visual stimuli in various contextual environments.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The brain uses contextual information to uniquely resolve the interpretation of ambiguous stimuli. An interdisciplinary effort which combines expertise in machine learning and neuroscience is used to formulate a generalized signal classification model that has the ability to integrate weighted bidirectional temporal or spatial context to effectively resolve the classification of ambiguous stimuli. The formulation of the model is quite general; consequently, it is not restricted to stimuli in any particular sensory modality nor to any type of classifier. Furthermore, the model parameters can be manipulated to simulate various context environments. The context-integrating model is implemented using a Gaussian multivariate classifier and a broad range of experiments are designed to demonstrate its effectiveness in classifying ambiguous visual stimuli in various contextual environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种解决模糊刺激的上下文整合信号分类模型
大脑使用上下文信息来独特地解决对模糊刺激的解释。结合机器学习和神经科学专业知识的跨学科努力用于制定广义信号分类模型,该模型具有整合加权双向时间或空间上下文的能力,以有效地解决模糊刺激的分类。该模型的公式是相当一般的;因此,它不局限于任何特定感官形态的刺激,也不局限于任何类型的分类器。此外,可以操纵模型参数来模拟各种上下文环境。上下文整合模型使用高斯多元分类器实现,并设计了广泛的实验来证明其在各种上下文环境中对模糊视觉刺激进行分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1