High dimensional exploration: A comparison of PCA, distance concentration, and classification performance in two fMRI datasets

J. Etzel, T. Braver
{"title":"High dimensional exploration: A comparison of PCA, distance concentration, and classification performance in two fMRI datasets","authors":"J. Etzel, T. Braver","doi":"10.1109/CIDM.2014.7008662","DOIUrl":null,"url":null,"abstract":"fMRI (functional magnetic resonance imaging) studies frequently create high dimensional datasets, with far more features (voxels) than examples. It is known that such datasets frequently have properties that make analysis challenging, such as concentration of distances. Here, we calculated the probability of distance concentration and proportion of variance explained by PCA in two fMRI datasets, comparing these measures with each other, as well as with the number of voxels and classification accuracy. There are clear differences between the datasets, with one showing levels of distance concentration comparable to those reported in microarray data [1, 2]. While it remains to be determined how typical these results are, they suggest that problematic levels of distance concentration in fMRI datasets may not be a rare occurrence.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

fMRI (functional magnetic resonance imaging) studies frequently create high dimensional datasets, with far more features (voxels) than examples. It is known that such datasets frequently have properties that make analysis challenging, such as concentration of distances. Here, we calculated the probability of distance concentration and proportion of variance explained by PCA in two fMRI datasets, comparing these measures with each other, as well as with the number of voxels and classification accuracy. There are clear differences between the datasets, with one showing levels of distance concentration comparable to those reported in microarray data [1, 2]. While it remains to be determined how typical these results are, they suggest that problematic levels of distance concentration in fMRI datasets may not be a rare occurrence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维探索:两种功能磁共振成像数据集中PCA、距离集中和分类性能的比较
fMRI(功能性磁共振成像)研究经常创建高维数据集,其特征(体素)远远多于示例。众所周知,此类数据集通常具有使分析具有挑战性的属性,例如距离的集中。在这里,我们计算了两个fMRI数据集的距离集中概率和PCA解释的方差比例,并将这些度量相互比较,以及与体素数和分类精度进行比较。数据集之间存在明显差异,其中一个数据集显示的距离浓度水平与微阵列数据中报道的水平相当[1,2]。虽然这些结果的典型程度仍有待确定,但它们表明,fMRI数据集中存在问题的距离集中水平可能并不罕见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1