Mobile Edge Computing-Based Vehicular Cloud of Cooperative Adaptive Driving for Platooning Autonomous Self Driving

Ren-Hung Huang, Ben-Jye Chang, Yueh-Lin Tsai, Ying-Hsin Liang
{"title":"Mobile Edge Computing-Based Vehicular Cloud of Cooperative Adaptive Driving for Platooning Autonomous Self Driving","authors":"Ren-Hung Huang, Ben-Jye Chang, Yueh-Lin Tsai, Ying-Hsin Liang","doi":"10.1109/SC2.2017.13","DOIUrl":null,"url":null,"abstract":"The Cooperative Adaptive Cruise Control (CACC) for Human and Autonomous Self-Driving aims to achieve active safe driving that avoids vehicle accidents or traffic jam by exchanging the road traffic information (e.g., traffic flow, traffic density, velocity variation, etc.) among neighbor vehicles. However, in CACC, the butterfly effect is happened while exhibiting asynchronous brakes that easily lead to backward shockwaves and difficult to be removed. Several critical issues should be addressed in CACC, including: 1) difficult to adaptively control the inter-vehicle distances among neighbor vehicles and the vehicle speed, 2) suffering from the butterfly effect, 3) unstable vehicle traffic flow, etc. For addressing above issues in CACC, this paper proposes the Mobile Edge Computing-based vehicular cloud of Cooperative Adaptive Driving (CAD) approach to avoid shockwaves efficiently in platoon driving. Numerical results demonstrate that CAD approach outperforms the compared approaches in number of shockwaves, average vehicle velocity, and average travel time. Additionally, the adaptive platoon length is determined according to the traffic information gathered from the global and local clouds.","PeriodicalId":188326,"journal":{"name":"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC2.2017.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The Cooperative Adaptive Cruise Control (CACC) for Human and Autonomous Self-Driving aims to achieve active safe driving that avoids vehicle accidents or traffic jam by exchanging the road traffic information (e.g., traffic flow, traffic density, velocity variation, etc.) among neighbor vehicles. However, in CACC, the butterfly effect is happened while exhibiting asynchronous brakes that easily lead to backward shockwaves and difficult to be removed. Several critical issues should be addressed in CACC, including: 1) difficult to adaptively control the inter-vehicle distances among neighbor vehicles and the vehicle speed, 2) suffering from the butterfly effect, 3) unstable vehicle traffic flow, etc. For addressing above issues in CACC, this paper proposes the Mobile Edge Computing-based vehicular cloud of Cooperative Adaptive Driving (CAD) approach to avoid shockwaves efficiently in platoon driving. Numerical results demonstrate that CAD approach outperforms the compared approaches in number of shockwaves, average vehicle velocity, and average travel time. Additionally, the adaptive platoon length is determined according to the traffic information gathered from the global and local clouds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于移动边缘计算的车辆协同自适应驾驶云队列自动驾驶
用于人类和自动驾驶的合作自适应巡航控制(Cooperative Adaptive Cruise Control, CACC)旨在通过交换相邻车辆之间的道路交通信息(如交通流量、交通密度、速度变化等),实现避免车辆事故或交通拥堵的主动安全驾驶。然而,在CACC中,蝴蝶效应发生在异步制动时,容易导致反向冲击波,难以消除。在ccc中需要解决的关键问题包括:难以自适应控制相邻车辆间距离和车速;存在蝴蝶效应;车辆交通流不稳定等。针对上述问题,本文提出了一种基于移动边缘计算的协同自适应驾驶车辆云(CAD)方法,以有效地避免队列驾驶中的冲击波。数值结果表明,CAD方法在激波数、平均车速和平均行驶时间等方面优于比较方法。此外,根据从全局和局部云收集的交通信息确定自适应队列长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilayered Cloud Applications Autoscaling Performance Estimation Optimal Placement of Network Security Monitoring Functions in NFV-Enabled Data Centers Application-Aware Traffic Redirection: A Mobile Edge Computing Implementation Toward Future 5G Networks A Mobile Cloud-Based Biofeedback Platform for Evaluating Medication Response Platform-as-a-Service for Human-Based Applications: Ontology-Driven Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1