LBSN Data and the Social Butterfly Effect (Vision Paper)

Clio Andris
{"title":"LBSN Data and the Social Butterfly Effect (Vision Paper)","authors":"Clio Andris","doi":"10.1145/2830657.2830658","DOIUrl":null,"url":null,"abstract":"LBSN data are well-suited for research questions and perspectives on social or spatial phenomena. Researchers often subset large LBSN datasets into different social networks (using snowball sampling), temporal or spatial granularities, to test for statistical patterns. Yet, researchers lack a way to examine how human interpersonal behavior results in digital traces of geolocated social events, although macro global flows of movement and communication are built from micro individual human intentions. To help navigate between the individual mind and the resultant big LBSN data that researchers use to understand society and space, I list a 14-tier scale of connectivity typologies. Each step can provide different a perspective of a single LBSN dataset. This scale can illustrate how perturbations at one level affect another level. E.g. How will reported escalating rates of autism affect the future network of connectivity between global cities? Will a change in migration policy strain emotional ties between an international family? The scale allows us to track changes at different levels between micro-, meso- and macro-scale social-spatial phenomena in a computationally-friendly way.","PeriodicalId":198109,"journal":{"name":"Proceedings of the 8th ACM SIGSPATIAL International Workshop on Location-Based Social Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM SIGSPATIAL International Workshop on Location-Based Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2830657.2830658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

LBSN data are well-suited for research questions and perspectives on social or spatial phenomena. Researchers often subset large LBSN datasets into different social networks (using snowball sampling), temporal or spatial granularities, to test for statistical patterns. Yet, researchers lack a way to examine how human interpersonal behavior results in digital traces of geolocated social events, although macro global flows of movement and communication are built from micro individual human intentions. To help navigate between the individual mind and the resultant big LBSN data that researchers use to understand society and space, I list a 14-tier scale of connectivity typologies. Each step can provide different a perspective of a single LBSN dataset. This scale can illustrate how perturbations at one level affect another level. E.g. How will reported escalating rates of autism affect the future network of connectivity between global cities? Will a change in migration policy strain emotional ties between an international family? The scale allows us to track changes at different levels between micro-, meso- and macro-scale social-spatial phenomena in a computationally-friendly way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LBSN数据与社会蝴蝶效应(Vision Paper)
LBSN数据非常适合研究社会或空间现象的问题和观点。研究人员经常将大型LBSN数据集分为不同的社会网络(使用雪球抽样),时间或空间粒度,以测试统计模式。然而,研究人员缺乏一种方法来研究人类的人际行为是如何导致地理位置上的社会事件的数字痕迹的,尽管宏观的全球运动和交流流动是由微观的个人人类意图建立的。为了帮助在个体思维和研究者用来理解社会和空间的LBSN大数据之间进行导航,我列出了14层的连接类型学量表。每一步都可以提供单个LBSN数据集的不同透视图。这个尺度可以说明一个层次上的扰动如何影响另一个层次。例:据报道,不断上升的自闭症发病率将如何影响未来全球城市之间的连接网络?移民政策的改变会使一个国际大家庭之间的情感关系变得紧张吗?该尺度允许我们以一种计算友好的方式跟踪微观、中观和宏观尺度社会空间现象在不同层次上的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilising Location Based Social Media in Travel Survey Methods: bringing Twitter data into the play Of Oxen and Birds: Is Yik Yak a useful new data source in the geosocial zoo or just another Twitter? EBSCAN: An Entanglement-based Algorithm for Discovering Dense Regions in Large Geo-social Data Streams with Noise Socio Textual Mapping LBSN Data and the Social Butterfly Effect (Vision Paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1