Evolving Single- And Multi-Model Fuzzy Classifiers with FLEXFIS-Class

E. Lughofer, P. Angelov, Xiaowei Zhou
{"title":"Evolving Single- And Multi-Model Fuzzy Classifiers with FLEXFIS-Class","authors":"E. Lughofer, P. Angelov, Xiaowei Zhou","doi":"10.1109/FUZZY.2007.4295393","DOIUrl":null,"url":null,"abstract":"In this paper a new method for training single-model and multi-model fuzzy classifiers incrementally and adaptively is proposed, which is called FLEXFIS-Class. The evolving scheme for the single-model case exploits a conventional zero-order fuzzy classification model architecture with Gaussian fuzzy sets in the rules antecedents, crisp class labels in the rule consequents and rule weights standing for confidence values in the class labels. In the multi-model case FLEXFIS-Class exploits the idea of regression by an indicator matrix to evolve a Takagi-Sugeno fuzzy model for each separate class and combines the single models' predictions to a final classification statement. The paper includes a technique for increasing the prediction quality, whenever a drift in a data stream occurs. An empirical analysis will be given based on an online, adaptive image classification framework, where images showing production items should be classified into good or bad ones. This analysis will include the comparison of evolving single-and multi-model fuzzy classifiers with conventional batch modelling approaches with respect to achieved prediction accuracy on new online data. It will also be shown that multi-model architecture can outperform conventional single-model architecture ('classical' fuzzy classification models) for all data sets with respect to prediction accuracy.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

In this paper a new method for training single-model and multi-model fuzzy classifiers incrementally and adaptively is proposed, which is called FLEXFIS-Class. The evolving scheme for the single-model case exploits a conventional zero-order fuzzy classification model architecture with Gaussian fuzzy sets in the rules antecedents, crisp class labels in the rule consequents and rule weights standing for confidence values in the class labels. In the multi-model case FLEXFIS-Class exploits the idea of regression by an indicator matrix to evolve a Takagi-Sugeno fuzzy model for each separate class and combines the single models' predictions to a final classification statement. The paper includes a technique for increasing the prediction quality, whenever a drift in a data stream occurs. An empirical analysis will be given based on an online, adaptive image classification framework, where images showing production items should be classified into good or bad ones. This analysis will include the comparison of evolving single-and multi-model fuzzy classifiers with conventional batch modelling approaches with respect to achieved prediction accuracy on new online data. It will also be shown that multi-model architecture can outperform conventional single-model architecture ('classical' fuzzy classification models) for all data sets with respect to prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于flexfi - class的单模型和多模型模糊分类器演化
本文提出了一种增量自适应训练单模型和多模型模糊分类器的新方法,称为flexfi - class。单模型情况下的进化方案利用传统的零阶模糊分类模型架构,其中规则前件中有高斯模糊集,规则结果中有清晰的类别标签,类别标签中的规则权重代表置信度值。在多模型情况下,flexfi - class利用回归的思想,通过指标矩阵为每个单独的类进化出Takagi-Sugeno模糊模型,并将单个模型的预测结合到最终的分类陈述。本文包含了一种提高预测质量的技术,无论何时数据流中出现漂移。将基于在线自适应图像分类框架进行实证分析,其中显示生产项目的图像应分为好或坏。这一分析将包括发展的单模型和多模型模糊分类器与传统的批处理建模方法在新的在线数据上实现预测精度的比较。还将表明,就预测精度而言,对于所有数据集,多模型体系结构可以优于传统的单模型体系结构(“经典”模糊分类模型)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1