Adaptive memetic algorithm for the vehicle routing problem with time windows

J. Nalepa
{"title":"Adaptive memetic algorithm for the vehicle routing problem with time windows","authors":"J. Nalepa","doi":"10.1145/2598394.2602273","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive memetic algorithm (AMA) to minimize the total travel distance in the NP-hard vehicle routing problem with time windows (VRPTW). Although memetic algorithms (MAs) have been proven to be very efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the AMA in which the selection scheme and the population size are adjusted during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the search space. An extensive experimental study confirms that the AMA outperforms a standard MA in terms of the convergence capabilities.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2602273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents an adaptive memetic algorithm (AMA) to minimize the total travel distance in the NP-hard vehicle routing problem with time windows (VRPTW). Although memetic algorithms (MAs) have been proven to be very efficient in solving the VRPTW, their main drawback is an unclear tuning of their numerous parameters. Here, we introduce the AMA in which the selection scheme and the population size are adjusted during the search. We propose a new adaptive selection scheme to balance the exploration and exploitation of the search space. An extensive experimental study confirms that the AMA outperforms a standard MA in terms of the convergence capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带时间窗车辆路径问题的自适应模因算法
针对带时间窗的NP-hard车辆路径问题,提出了一种自适应模因算法(AMA)。尽管模因算法(memetic algorithms, MAs)已被证明在解决VRPTW方面非常有效,但其主要缺点是其众多参数的调优不明确。在这里,我们引入了在搜索过程中调整选择方案和种群大小的AMA。我们提出了一种新的自适应选择方案来平衡搜索空间的探索和利用。一项广泛的实验研究证实,AMA在收敛能力方面优于标准MA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1