Answering Natural-Language Questions with Neuro-Symbolic Knowledge Bases

Haitian Sun, Pat Verga, William W. Cohen
{"title":"Answering Natural-Language Questions with Neuro-Symbolic Knowledge Bases","authors":"Haitian Sun, Pat Verga, William W. Cohen","doi":"10.3233/faia210352","DOIUrl":null,"url":null,"abstract":"Symbolic reasoning systems based on first-order logics are computationally powerful, and feedforward neural networks are computationally efficient, so unless P=NP, neural networks cannot, in general, emulate symbolic logics. Hence bridging the gap between neural and symbolic methods requires achieving a delicate balance: one needs to incorporate just enough of symbolic reasoning to be useful for a task, but not so much as to cause computational intractability. In this chapter we first present results that make this claim precise, and then use these formal results to inform the choice of a neuro-symbolic knowledge-based reasoning system, based on a set-based dataflow query language. We then present experimental results with a number of variants of this neuro-symbolic reasoner, and also show that this neuro-symbolic reasoner can be closely integrated into modern neural language models.","PeriodicalId":250200,"journal":{"name":"Neuro-Symbolic Artificial Intelligence","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-Symbolic Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/faia210352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Symbolic reasoning systems based on first-order logics are computationally powerful, and feedforward neural networks are computationally efficient, so unless P=NP, neural networks cannot, in general, emulate symbolic logics. Hence bridging the gap between neural and symbolic methods requires achieving a delicate balance: one needs to incorporate just enough of symbolic reasoning to be useful for a task, but not so much as to cause computational intractability. In this chapter we first present results that make this claim precise, and then use these formal results to inform the choice of a neuro-symbolic knowledge-based reasoning system, based on a set-based dataflow query language. We then present experimental results with a number of variants of this neuro-symbolic reasoner, and also show that this neuro-symbolic reasoner can be closely integrated into modern neural language models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用神经符号知识库回答自然语言问题
基于一阶逻辑的符号推理系统具有强大的计算能力,而前馈神经网络具有高效的计算能力,因此除非P=NP,否则神经网络通常无法模拟符号逻辑。因此,弥合神经方法和符号方法之间的差距需要达到一种微妙的平衡:一个人需要结合足够的符号推理来完成一项任务,但又不能过多地导致计算困难。在本章中,我们首先给出了使这一说法准确的结果,然后使用这些形式化的结果来告知基于集的数据流查询语言的神经符号知识推理系统的选择。然后,我们展示了该神经符号推理器的许多变体的实验结果,并表明该神经符号推理器可以紧密集成到现代神经语言模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuro-Symbolic Semantic Reasoning Abductive Learning Graph Reasoning Networks and Applications Neuro-Symbolic Artificial Intelligence: The State of the Art Logic Tensor Networks: Theory and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1