On Nonparametric Conditional Quantile Estimation for Non-stationary Random

Ben Célestin Kouassi, Ouagnina Hili, Edoh Katchekpele
{"title":"On Nonparametric Conditional Quantile Estimation for Non-stationary Random","authors":"Ben Célestin Kouassi, Ouagnina Hili, Edoh Katchekpele","doi":"10.16929/as/2022.3293.307","DOIUrl":null,"url":null,"abstract":"Since the studies of Engel (1982) and Bollerslev (1986), the ARCH and GARCH processes have been used extensively to model volatile series. However, Pagan and Schwert (1990) have shown the limits of these choices. This deficiency is overcome by the NonParametric AutoRegressive Conditionally Heteroscedastic (NPARCH) processes. In this work, we use the Nadaraya-Watson method to estimate the autoregression and volatility functions of a NPARCH process. We show the strong consistency and the asymptotic normality of these estimators. Through brief simulations, we illustrate these two properties.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2022.3293.307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since the studies of Engel (1982) and Bollerslev (1986), the ARCH and GARCH processes have been used extensively to model volatile series. However, Pagan and Schwert (1990) have shown the limits of these choices. This deficiency is overcome by the NonParametric AutoRegressive Conditionally Heteroscedastic (NPARCH) processes. In this work, we use the Nadaraya-Watson method to estimate the autoregression and volatility functions of a NPARCH process. We show the strong consistency and the asymptotic normality of these estimators. Through brief simulations, we illustrate these two properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平稳随机的非参数条件分位数估计
自Engel(1982)和Bollerslev(1986)的研究以来,ARCH和GARCH过程已被广泛用于模拟挥发性序列。然而,Pagan和Schwert(1990)已经表明了这些选择的局限性。非参数自回归条件异方差(NPARCH)过程克服了这一缺陷。在这项工作中,我们使用Nadaraya-Watson方法来估计NPARCH过程的自回归和波动函数。证明了这些估计量的强相合性和渐近正态性。通过简单的模拟,我们说明了这两个特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Nonparametric Estimation of a Nonparametric Autoregressive Conditionally Heteroscedastic Process On the Kumaraswamy Pseudo-Lindley distribution : statistical properties, extremal characterization and record values On Nonparametric Conditional Quantile Estimation for Non-stationary Random Asymptotic normality for kernel weighted averages estimation A note on a modification of the adaptive kernel density estimation of income distribution and poverty index via the range}
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1