ERP Detector using Texture Filters and Tucker Decomposition

Rubén Álvarez-González, Andres Mendez-Vazquez
{"title":"ERP Detector using Texture Filters and Tucker Decomposition","authors":"Rubén Álvarez-González, Andres Mendez-Vazquez","doi":"10.1109/ICCIA49625.2020.00049","DOIUrl":null,"url":null,"abstract":"Vision is the dominant sensory channel by which humans acquire external information. Understanding how the human brain responds to a visual stimulus will help us develop better brain-machine interfaces and describe the human-brain activity response. One technique for tracking brain activity is functional magnetic resonance imaging (fMRI) using blood-oxygen-level-dependent imaging or BOLD-contrast imaging to show the blood oxygenation in the brain before, during and after a stimulus. Identifying the brain activity provoked by a given stimulus is a topic in different research centers.When popular classifiers do not provide perfect accuracy in a practical application, possible causes of their failure can be deficiencies in the algorithms and intrinsic difficulties in the data. In machine and deep learning, models mostly remain black boxes; convolutional neural networks (CNN) are no exception. This understanding of the design of the machine-learning pipeline and the feature-extraction process will provide insight into what a classification model could be.","PeriodicalId":237536,"journal":{"name":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA49625.2020.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vision is the dominant sensory channel by which humans acquire external information. Understanding how the human brain responds to a visual stimulus will help us develop better brain-machine interfaces and describe the human-brain activity response. One technique for tracking brain activity is functional magnetic resonance imaging (fMRI) using blood-oxygen-level-dependent imaging or BOLD-contrast imaging to show the blood oxygenation in the brain before, during and after a stimulus. Identifying the brain activity provoked by a given stimulus is a topic in different research centers.When popular classifiers do not provide perfect accuracy in a practical application, possible causes of their failure can be deficiencies in the algorithms and intrinsic difficulties in the data. In machine and deep learning, models mostly remain black boxes; convolutional neural networks (CNN) are no exception. This understanding of the design of the machine-learning pipeline and the feature-extraction process will provide insight into what a classification model could be.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纹理滤波器和塔克分解的ERP检测器
视觉是人类获取外部信息的主要感官通道。了解人类大脑对视觉刺激的反应将有助于我们开发更好的脑机接口,并描述人类大脑的活动反应。追踪大脑活动的一种技术是功能性磁共振成像(fMRI),它使用依赖血氧水平的成像或bold对比成像来显示刺激之前、期间和之后大脑中的血氧情况。在不同的研究中心,识别由特定刺激引起的大脑活动是一个课题。当流行的分类器在实际应用中不能提供完美的准确性时,它们失败的可能原因可能是算法的缺陷和数据的内在困难。在机器学习和深度学习中,模型大多仍然是黑盒子;卷积神经网络(CNN)也不例外。这种对机器学习管道设计和特征提取过程的理解将提供对分类模型的深入了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does ensemble really work when facing the twitter semantic classification? A Short-Term Hybrid Forecasting Approach for Regional Electricity Consumption Based on Grey Theory and Random Forest A negative selection algorithm based on adaptive immunoregulation ICCIA 2020 Breaker Page Video Prediction and Anomaly Detection Algorithm Based On Dual Discriminator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1