G. PrithamSriram, S. PrasanaVenkatesh, P. DeepakRaj, Angelin Gladston
{"title":"Modified GAN for Natural Occlusion Detection and Inpainting of Raw Footage From Video Surveillance","authors":"G. PrithamSriram, S. PrasanaVenkatesh, P. DeepakRaj, Angelin Gladston","doi":"10.4018/ijbdia.312852","DOIUrl":null,"url":null,"abstract":"Low resolution and occlusion are mainly prominent in images taken from certain unconstrained environments such as raw footage from video surveillance. In this work, a deep generative adversarial network for joint face completion and face super-resolution is proposed. It will be really useful in the current COVID-19 scenario as people wearing masks are a common sight. Given an input of a low-resolution face image with occlusion, the generator aims to recover a high-resolution face image without occlusion. The discriminator uses a set of carefully designed losses to assure the high quality of the recovered high-resolution face images without occlusion. Experimental results on CelebA database show that the proposed approach outperforms the state-of-the-art methods in jointly performing face super-resolution and face completion, and shows good generalization ability in cross-database testing. MSSIM showed an accuracy of around 80% for test cases. The recorded values of generator adversarial loss, generator pixel loss, and discriminator loss are 0.93, 0.10, and 0.003, respectively.","PeriodicalId":398232,"journal":{"name":"Int. J. Big Data Intell. Appl.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Big Data Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijbdia.312852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Low resolution and occlusion are mainly prominent in images taken from certain unconstrained environments such as raw footage from video surveillance. In this work, a deep generative adversarial network for joint face completion and face super-resolution is proposed. It will be really useful in the current COVID-19 scenario as people wearing masks are a common sight. Given an input of a low-resolution face image with occlusion, the generator aims to recover a high-resolution face image without occlusion. The discriminator uses a set of carefully designed losses to assure the high quality of the recovered high-resolution face images without occlusion. Experimental results on CelebA database show that the proposed approach outperforms the state-of-the-art methods in jointly performing face super-resolution and face completion, and shows good generalization ability in cross-database testing. MSSIM showed an accuracy of around 80% for test cases. The recorded values of generator adversarial loss, generator pixel loss, and discriminator loss are 0.93, 0.10, and 0.003, respectively.