Guiding VNS with Tree Decomposition

Mathieu Fontaine, S. Loudni, P. Boizumault
{"title":"Guiding VNS with Tree Decomposition","authors":"Mathieu Fontaine, S. Loudni, P. Boizumault","doi":"10.1109/ICTAI.2011.82","DOIUrl":null,"url":null,"abstract":"Tree decomposition introduced by Robertson and Seymour aims to decompose a problem into clusters constituting an a cyclic graph. There are works exploiting tree decomposition for complete search methods. In this paper, we show how tree decomposition can be used to efficiently guide the exploration of local search methods that use large neighborhoods like VNS. We introduce tightness dependent tree decomposition which allows to take advantage of both the structure of the problem and the constraints tightness. Experiments performed on random instances (GRAPH) and real life instances (CELAR and SPOT5) show the appropriateness and the efficiency of our approach.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Tree decomposition introduced by Robertson and Seymour aims to decompose a problem into clusters constituting an a cyclic graph. There are works exploiting tree decomposition for complete search methods. In this paper, we show how tree decomposition can be used to efficiently guide the exploration of local search methods that use large neighborhoods like VNS. We introduce tightness dependent tree decomposition which allows to take advantage of both the structure of the problem and the constraints tightness. Experiments performed on random instances (GRAPH) and real life instances (CELAR and SPOT5) show the appropriateness and the efficiency of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用树分解引导VNS
由Robertson和Seymour引入的树分解旨在将问题分解成构成循环图的聚类。有一些研究利用树分解来实现完整的搜索方法。在本文中,我们展示了如何使用树分解来有效地指导使用像VNS这样的大邻域的局部搜索方法的探索。我们引入了紧度相关的树分解,它可以同时利用问题的结构和约束的紧度。在随机实例(GRAPH)和实际实例(CELAR和SPOT5)上进行的实验表明了我们的方法的适当性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1