A Real-time Multipoint-based Object Detector

Wei Li, Xianghua Ma, T. Peng
{"title":"A Real-time Multipoint-based Object Detector","authors":"Wei Li, Xianghua Ma, T. Peng","doi":"10.1109/ICCIA49625.2020.00008","DOIUrl":null,"url":null,"abstract":"A real-time multipoint-based object detector - EMPDet is proposed in this paper to improve the processing speed with reasonable sacrifice in accuracy. A lightweight neural network block is proposed and integrated into the compact hourglass networks to reduce the consumption in image feature extraction. The channel mechanism is used to enhance the performance of the convolutional neural network to screen shallow semantic information in high-resolution feature maps. Experiments results on the detection benchmark (Microsoft COCO) show that the proposed detector has superior performance compared to the current most popular YOLOv3 under reasonable overhead.","PeriodicalId":237536,"journal":{"name":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA49625.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A real-time multipoint-based object detector - EMPDet is proposed in this paper to improve the processing speed with reasonable sacrifice in accuracy. A lightweight neural network block is proposed and integrated into the compact hourglass networks to reduce the consumption in image feature extraction. The channel mechanism is used to enhance the performance of the convolutional neural network to screen shallow semantic information in high-resolution feature maps. Experiments results on the detection benchmark (Microsoft COCO) show that the proposed detector has superior performance compared to the current most popular YOLOv3 under reasonable overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多点的实时目标检测器
为了在牺牲精度的前提下提高处理速度,本文提出了一种基于多点的实时目标检测器——EMPDet。提出了一种轻量级的神经网络块,并将其集成到紧凑的沙漏网络中,以减少图像特征提取的消耗。利用通道机制增强卷积神经网络在高分辨率特征图中筛选浅层语义信息的性能。在检测基准(Microsoft COCO)上的实验结果表明,在合理的开销下,所提出的检测器与当前最流行的YOLOv3相比具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does ensemble really work when facing the twitter semantic classification? A Short-Term Hybrid Forecasting Approach for Regional Electricity Consumption Based on Grey Theory and Random Forest A negative selection algorithm based on adaptive immunoregulation ICCIA 2020 Breaker Page Video Prediction and Anomaly Detection Algorithm Based On Dual Discriminator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1