ANN-based-modling to study the Neutron radiation effects on MOS devices

F. Meddour, A. Meddour, M. Abdi, M. Amir
{"title":"ANN-based-modling to study the Neutron radiation effects on MOS devices","authors":"F. Meddour, A. Meddour, M. Abdi, M. Amir","doi":"10.1109/CCEE.2018.8634508","DOIUrl":null,"url":null,"abstract":"In this work, a MOS devices model based on the artificial neural network (ANN) is proposed. This model is designed in order to use it in the neutron radiation effects. It allows us to infer several information about neutrons such as angle $\\theta$, fluence, drain source voltage (Vds), voltage between the drain and source, (Vgs) voltage between the gate and source, (Ids) current between the drain and source and the temperature. the results achieved are similar with the experimental results of the literature.","PeriodicalId":200936,"journal":{"name":"2018 International Conference on Communications and Electrical Engineering (ICCEE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Communications and Electrical Engineering (ICCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCEE.2018.8634508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a MOS devices model based on the artificial neural network (ANN) is proposed. This model is designed in order to use it in the neutron radiation effects. It allows us to infer several information about neutrons such as angle $\theta$, fluence, drain source voltage (Vds), voltage between the drain and source, (Vgs) voltage between the gate and source, (Ids) current between the drain and source and the temperature. the results achieved are similar with the experimental results of the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的模拟研究中子辐射对MOS器件的影响
本文提出了一种基于人工神经网络的MOS器件模型。设计该模型是为了将其应用于中子辐射效应。它允许我们推断出中子的一些信息,如角度$\theta$,通量,漏极源电压(Vds),漏极和源极之间的电压,栅极和源极之间的电压,漏极和源极之间的电流和温度。所得结果与文献实验结果基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-Encoder with Neural Networks for Wind Speed Forecasting Stator Current Demodulation Using Square Roots Current Stator for Inverter-Fed Induction Motor at Low Load Conditions Design and Investigation of Axial Flux Permanent Magnet Synchronous Machine for electric vehicles Simulation of GaSe buffer layer on the CuInGaSe2-based solar cells by SCAPs Role of High-K and Gate Engineering in Improving Rf/Analog Performances of In 0.2 Ga0.8As/Al0.3Ga0.7As HEMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1