Continuous analytics on graph data streams using WSO2 complex event processor

Malith Jayasinghe, Anoukh Jayawardena, Bhagya Rupasinghe, Miyuru Dayarathna, S. Perera, Sriskandarajah Suhothayan, I. Perera
{"title":"Continuous analytics on graph data streams using WSO2 complex event processor","authors":"Malith Jayasinghe, Anoukh Jayawardena, Bhagya Rupasinghe, Miyuru Dayarathna, S. Perera, Sriskandarajah Suhothayan, I. Perera","doi":"10.1145/2933267.2933508","DOIUrl":null,"url":null,"abstract":"The ACM DEBS Grand Challenge 2016 focuses on analysing the properties of a time evolving social-network graph generated using LDBC (Linked Data Benchmark Council) Social Network Benchmark. In this paper we present how we used WSO2 CEP, an open source, commercially available Complex Event Processing Engine, to solve the problem. On a 4-core/8 GB virtual machine, our solution processed 90,000 events per second with a mean latency of 6 ms for query 1. For query 2 it processed 210,000 events per second with a mean latency of only 0.3 ms. The paper describes the solution we propose, the experiments' results, and presents how we optimized the performance of our solution.","PeriodicalId":277061,"journal":{"name":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933267.2933508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The ACM DEBS Grand Challenge 2016 focuses on analysing the properties of a time evolving social-network graph generated using LDBC (Linked Data Benchmark Council) Social Network Benchmark. In this paper we present how we used WSO2 CEP, an open source, commercially available Complex Event Processing Engine, to solve the problem. On a 4-core/8 GB virtual machine, our solution processed 90,000 events per second with a mean latency of 6 ms for query 1. For query 2 it processed 210,000 events per second with a mean latency of only 0.3 ms. The paper describes the solution we propose, the experiments' results, and presents how we optimized the performance of our solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用WSO2复杂事件处理器对图形数据流进行连续分析
ACM DEBS大挑战2016侧重于分析使用LDBC(关联数据基准委员会)社交网络基准生成的随时间演变的社交网络图的属性。在本文中,我们介绍了如何使用WSO2 CEP(一种开源的、商业上可用的复杂事件处理引擎)来解决这个问题。在一个4核/8 GB的虚拟机上,我们的解决方案每秒处理90,000个事件,查询1的平均延迟为6毫秒。对于查询2,它每秒处理210,000个事件,平均延迟仅为0.3 ms。本文介绍了我们提出的解决方案,实验结果,并介绍了我们如何优化我们的解决方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy efficient, context-aware cache coding for mobile information-centric networks High performance top-k processing of non-linear windows over data streams Distributed k-core decomposition and maintenance in large dynamic graphs Experience of event stream processing for top-k queries and dynamic graphs Automating computational placement in IoT environments: doctoral symposium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1