{"title":"AutoSA","authors":"Jie Wang, Licheng Guo, J. Cong","doi":"10.1145/3431920.3439292","DOIUrl":null,"url":null,"abstract":"While systolic array architectures have the potential to deliver tremendous performance, it is notoriously challenging to customize an efficient systolic array processor for a target application. Designing systolic arrays requires knowledge for both high-level characteristics of the application and low-level hardware details, thus making it a demanding and inefficient process. To relieve users from the manual iterative trial-and-error process, we present AutoSA, an end-to-end compilation framework for generating systolic arrays on FPGA. AutoSA is based on the polyhedral framework, and further incorporates a set of optimizations on different dimensions to boost performance. An efficient and comprehensive design space exploration is performed to search for high-performance designs. We have demonstrated AutoSA on a wide range of applications, on which AutoSA achieves high performance within a short amount of time. As an example, for matrix multiplication, AutoSA achieves 934 GFLOPs, 3.41 TOPs, and 6.95 TOPs in floating point, 16-bit and 8-bit integer data types on Xilinx Alveo U250.","PeriodicalId":386071,"journal":{"name":"The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3431920.3439292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

While systolic array architectures have the potential to deliver tremendous performance, it is notoriously challenging to customize an efficient systolic array processor for a target application. Designing systolic arrays requires knowledge for both high-level characteristics of the application and low-level hardware details, thus making it a demanding and inefficient process. To relieve users from the manual iterative trial-and-error process, we present AutoSA, an end-to-end compilation framework for generating systolic arrays on FPGA. AutoSA is based on the polyhedral framework, and further incorporates a set of optimizations on different dimensions to boost performance. An efficient and comprehensive design space exploration is performed to search for high-performance designs. We have demonstrated AutoSA on a wide range of applications, on which AutoSA achieves high performance within a short amount of time. As an example, for matrix multiplication, AutoSA achieves 934 GFLOPs, 3.41 TOPs, and 6.95 TOPs in floating point, 16-bit and 8-bit integer data types on Xilinx Alveo U250.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoSA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring PGAS Communication for Heterogeneous Clusters with FPGAs NASCENT: Near-Storage Acceleration of Database Sort on SmartSSD Global Is the New Local: FPGA Architecture at 5nm and Beyond Triggered Scheduling: Efficient Detection of Dataflow Network Idleness on Heterogeneous Systems Reconfigurable Acceleration of Short Read Mapping with Biological Consideration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1