An open speech resource for Tibetan multi-dialect and multitask recognition

Yue Zhao, Xiaona Xu, Jianjian Yue, Wei Song, Xiali Li, Licheng Wu, Q. Ji
{"title":"An open speech resource for Tibetan multi-dialect and multitask recognition","authors":"Yue Zhao, Xiaona Xu, Jianjian Yue, Wei Song, Xiali Li, Licheng Wu, Q. Ji","doi":"10.1504/ijcse.2020.10029389","DOIUrl":null,"url":null,"abstract":"This paper introduces a Tibetan multi-dialect data resource for multitask speech research. It can be used for Tibetan multi-dialect speech recognition, Tibetan speaker recognition, Tibetan dialect identification, and Tibetan speech synthesis. The resource consists of 30 hours Lhasa-U-Tsang dialect; 8.7 hours Kham dialect, including 3.4 hours Yushu dialect, 3.3 hours Dege dialect and 2 hours Changdu dialect; 10 hours Amdo pastoral dialect. Other resources are also provided for Lhasa-U-Tsang dialect including phoneme set, pronunciation dictionary and the codes for constructing the Lhasa-U-Tsang speech recognition baseline system. Meanwhile, for Tibetan multi-dialect and multitask speech recognition, the codes and recognition results based on WaveNet-connectionist temporal classification (WaveNet-CTC) are provided. All the resources are free for researchers and publicly available, which effectively compensates for the shortage of public Tibetan multi-dialect speech resources in order to promote the development of Tibetan multi-dialect speech processing technology.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10029389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a Tibetan multi-dialect data resource for multitask speech research. It can be used for Tibetan multi-dialect speech recognition, Tibetan speaker recognition, Tibetan dialect identification, and Tibetan speech synthesis. The resource consists of 30 hours Lhasa-U-Tsang dialect; 8.7 hours Kham dialect, including 3.4 hours Yushu dialect, 3.3 hours Dege dialect and 2 hours Changdu dialect; 10 hours Amdo pastoral dialect. Other resources are also provided for Lhasa-U-Tsang dialect including phoneme set, pronunciation dictionary and the codes for constructing the Lhasa-U-Tsang speech recognition baseline system. Meanwhile, for Tibetan multi-dialect and multitask speech recognition, the codes and recognition results based on WaveNet-connectionist temporal classification (WaveNet-CTC) are provided. All the resources are free for researchers and publicly available, which effectively compensates for the shortage of public Tibetan multi-dialect speech resources in order to promote the development of Tibetan multi-dialect speech processing technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向藏语多方言多任务识别的开放语音资源
本文介绍了一种用于多任务语音研究的藏语多方言数据资源。可用于藏语多方言语音识别、藏语说话人识别、藏语方言识别和藏语语音合成。资源包括30小时的拉萨-乌-曾方言;康方言8.7学时,其中玉树方言3.4学时、德格方言3.3学时、昌都方言2学时;10小时安多田园方言。此外,还提供了其他资源,包括音素集、发音字典和构建拉萨-裕- tsang语音识别基线系统的代码。同时,针对藏语多方言多任务语音识别,给出了基于WaveNet-connectionist temporal classification (WaveNet-CTC)的编码和识别结果。所有资源对研究人员都是免费的,并且是公开的,这有效地弥补了公共藏语多方言语音资源的不足,从而促进藏语多方言语音处理技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1