A Machine Learning Approach for Predicting Human Preference for Graph Layouts*

Shijun Cai, Seok-Hee Hong, Jialiang Shen, Tongliang Liu
{"title":"A Machine Learning Approach for Predicting Human Preference for Graph Layouts*","authors":"Shijun Cai, Seok-Hee Hong, Jialiang Shen, Tongliang Liu","doi":"10.1109/PacificVis52677.2021.00009","DOIUrl":null,"url":null,"abstract":"Understanding what graph layout human prefer and why they prefer such graph layout is significant and challenging due to the highly complex visual perception and cognition system in human brain. In this paper, we present the first machine learning approach for predicting human preference for graph layouts.In general, the data sets with human preference labels are limited and insufficient for training deep networks. To address this, we train our deep learning model by employing the transfer learning method, e.g., exploiting the quality metrics, such as shape-based metrics, edge crossing and stress, which are shown to be correlated to human preference on graph layouts. Experimental results using the ground truth human preference data sets show that our model can successfully predict human preference for graph layouts. To our best knowledge, this is the first approach for predicting qualitative evaluation of graph layouts using human preference experiment data.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Understanding what graph layout human prefer and why they prefer such graph layout is significant and challenging due to the highly complex visual perception and cognition system in human brain. In this paper, we present the first machine learning approach for predicting human preference for graph layouts.In general, the data sets with human preference labels are limited and insufficient for training deep networks. To address this, we train our deep learning model by employing the transfer learning method, e.g., exploiting the quality metrics, such as shape-based metrics, edge crossing and stress, which are shown to be correlated to human preference on graph layouts. Experimental results using the ground truth human preference data sets show that our model can successfully predict human preference for graph layouts. To our best knowledge, this is the first approach for predicting qualitative evaluation of graph layouts using human preference experiment data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种预测人类对图形布局偏好的机器学习方法*
由于人类大脑中高度复杂的视觉感知和认知系统,理解人类喜欢什么样的图形布局以及为什么喜欢这样的图形布局是非常重要和具有挑战性的。在本文中,我们提出了第一种用于预测人类对图形布局偏好的机器学习方法。一般来说,具有人类偏好标签的数据集是有限的,不足以用于训练深度网络。为了解决这个问题,我们采用迁移学习方法来训练我们的深度学习模型,例如,利用质量指标,如基于形状的指标,边缘交叉和应力,这些指标被证明与人类对图形布局的偏好相关。使用真实人类偏好数据集的实验结果表明,我们的模型可以成功地预测人类对图形布局的偏好。据我们所知,这是第一个使用人类偏好实验数据预测图形布局定性评价的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles Know-What and Know-Who: Document Searching and Exploration using Topic-Based Two-Mode Networks Louvain-based Multi-level Graph Drawing A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1