Power line detection using Integrated Vector Radon Transform

B. Alpatov, P. Babayan, N. Shubin
{"title":"Power line detection using Integrated Vector Radon Transform","authors":"B. Alpatov, P. Babayan, N. Shubin","doi":"10.1109/MECO.2016.7525729","DOIUrl":null,"url":null,"abstract":"In this paper we suggest an approach to computational effective power line detection using the Integrated Vector Radon Transform (IVRT). The suggested IVRT-based approach uses gradient direction information. The experimental results show the effectiveness of the IVRT-based power line detection.","PeriodicalId":253666,"journal":{"name":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2016.7525729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we suggest an approach to computational effective power line detection using the Integrated Vector Radon Transform (IVRT). The suggested IVRT-based approach uses gradient direction information. The experimental results show the effectiveness of the IVRT-based power line detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成矢量Radon变换的电力线检测
本文提出了一种利用集成矢量Radon变换(IVRT)计算有效电力线检测的方法。建议的基于ivrt的方法使用梯度方向信息。实验结果表明了基于ivrt的电力线检测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logo watermarking for speech signal protection in the compressive sensing scenario Unaliasing of undersampled spectra Driving behavior simulator of lane changing using user-designed interface Prediction of children diseases using semantics Comparative analysis of classification algorithms on three different datasets using WEKA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1