{"title":"Watermarked video delivery: traffic reduction and CDN management","authors":"Kun He, P. Maillé, G. Simon","doi":"10.1145/3204949.3204964","DOIUrl":null,"url":null,"abstract":"In order to track the users who illegally re-stream live video streams, one solution is to embed identified watermark sequences in the video segments to distinguish the users. However, since all types of watermarked segments should be prepared, the existing solutions require an extra cost of bandwidth for delivery (at least multiplying by two the required bandwidth). In this paper, we study how to reduce the inner delivery (traffic) cost of a Content Delivery Network (CDN). We propose a mechanism that reduces the number of watermarked segments that need to be encoded and delivered. We calculate the best- and worst-case traffics for two different cases: multicast and unicast. The results illustrate that even in the worst cases, the traffic with our approach is much lower than without reducing. Moreover, the watermarked sequences can still maintain uniqueness for each user. Experiments based on a real database are carried out, and illustrate that our mechanism significantly reduces traffic with respect to the current CDN practice.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204949.3204964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In order to track the users who illegally re-stream live video streams, one solution is to embed identified watermark sequences in the video segments to distinguish the users. However, since all types of watermarked segments should be prepared, the existing solutions require an extra cost of bandwidth for delivery (at least multiplying by two the required bandwidth). In this paper, we study how to reduce the inner delivery (traffic) cost of a Content Delivery Network (CDN). We propose a mechanism that reduces the number of watermarked segments that need to be encoded and delivered. We calculate the best- and worst-case traffics for two different cases: multicast and unicast. The results illustrate that even in the worst cases, the traffic with our approach is much lower than without reducing. Moreover, the watermarked sequences can still maintain uniqueness for each user. Experiments based on a real database are carried out, and illustrate that our mechanism significantly reduces traffic with respect to the current CDN practice.