{"title":"Experimental investigation on colloidal alumina nanoparticles produced by collinear nanosecond double-pulse laser ablation in liquid","authors":"M. Mahdieh, B. Fattahi, M. Akbari Jafarabadi","doi":"10.1117/12.2257277","DOIUrl":null,"url":null,"abstract":"In this research, we investigated the effect of inter-pulse delay times on production of colloidal alumina nanoparticles by collinear double pulse laser ablation. In comparison to single pulse laser ablation, collinear double pulse laser ablation with inter-pulse delay times of 5, 10, 15 and 20 ns results in production of colloidal nanoparticles with smaller mean size and lower variance size distribution. In the case of 5 ns inter-pulse delay time, the highest concentration of nanoparticles was obtained due to more rapid cooling time of the plasma as a result of higher rate of nuclei generation than particle growth. The results also showed that the main pulse and the pre-pulse with 5 ns delay time have significant overlap and consequently such condition leads to maximum influence on the ablation.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on High Power Laser Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2257277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, we investigated the effect of inter-pulse delay times on production of colloidal alumina nanoparticles by collinear double pulse laser ablation. In comparison to single pulse laser ablation, collinear double pulse laser ablation with inter-pulse delay times of 5, 10, 15 and 20 ns results in production of colloidal nanoparticles with smaller mean size and lower variance size distribution. In the case of 5 ns inter-pulse delay time, the highest concentration of nanoparticles was obtained due to more rapid cooling time of the plasma as a result of higher rate of nuclei generation than particle growth. The results also showed that the main pulse and the pre-pulse with 5 ns delay time have significant overlap and consequently such condition leads to maximum influence on the ablation.