Ryota Ochiai, M. Iyoda, M. Taniwaki, Shunichi Sato
The authors have developed the computer simulation codes to analyze the effect of conditions on the performances of discharge excited high power gas flow CO laser. The six be analyzed. The simulation code described and executed by Macintosh computers consists of some modules to calculate the kinetic processes. The detailed conditions, kinetic processes, results and discussions are described in this paper below.
{"title":"Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser","authors":"Ryota Ochiai, M. Iyoda, M. Taniwaki, Shunichi Sato","doi":"10.1117/12.2254956","DOIUrl":"https://doi.org/10.1117/12.2254956","url":null,"abstract":"The authors have developed the computer simulation codes to analyze the effect of conditions on the performances of discharge excited high power gas flow CO laser. The six be analyzed. The simulation code described and executed by Macintosh computers consists of some modules to calculate the kinetic processes. The detailed conditions, kinetic processes, results and discussions are described in this paper below.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129884968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shu Hu, Baodong Gai, Pengyuan Wang, Hui Li, Y. Tan, Jinbo Liu, Jingwei Guo
Excimer pumped sodium laser (XPNaL) can accurately achieve lasing at 589.16 nm without any complicated control system to reduce the wavelength error, so XPNaL will provide a novel technical system for sodium beacon laser. In this paper, we studied the Na-C2H6 system, which was an efficient excimer pair. We excited the Na-C2H6 system using a pulsed dye laser with wavelength of 553 nm, and measured lifetime of sodium D2 line based on the fluorescence spectra. Meanwhile, we have also detected strong amplified spontaneous emission (ASE) signal in Na-C2H6 system, through the experimental study, the Na-C2H6 system is considered to own the potential to be utilized in high power XPNaL.
{"title":"Spectrum characteristic study of sodium-ethane excimer pairs","authors":"Shu Hu, Baodong Gai, Pengyuan Wang, Hui Li, Y. Tan, Jinbo Liu, Jingwei Guo","doi":"10.1117/12.2257045","DOIUrl":"https://doi.org/10.1117/12.2257045","url":null,"abstract":"Excimer pumped sodium laser (XPNaL) can accurately achieve lasing at 589.16 nm without any complicated control system to reduce the wavelength error, so XPNaL will provide a novel technical system for sodium beacon laser. In this paper, we studied the Na-C2H6 system, which was an efficient excimer pair. We excited the Na-C2H6 system using a pulsed dye laser with wavelength of 553 nm, and measured lifetime of sodium D2 line based on the fluorescence spectra. Meanwhile, we have also detected strong amplified spontaneous emission (ASE) signal in Na-C2H6 system, through the experimental study, the Na-C2H6 system is considered to own the potential to be utilized in high power XPNaL.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127519426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Geints, A. Ionin, D. Mokrousova, L. Seleznev, D. Sinitsyn, E. Sunchugasheva, A. Zemlyanov
Experimental and theoretical study of the post-filamentation stage of focused high-power Ti:Sa laser pulses in air is presented. Angular divergence of the laser beam, as well as angular and spatial characteristics of specific spatially localized light structures, the post-filament channels (PFCs), under different initial focusing conditions and laser beam energy are investigated. We show that PFC angular divergence is always less than that of the whole laser beam and tends to decrease with laser pulse energy increase and beam focal length elongation.
{"title":"Post-filamentation high-intensive light channels formation upon ultrashort laser pulses self-focusing in air","authors":"Y. Geints, A. Ionin, D. Mokrousova, L. Seleznev, D. Sinitsyn, E. Sunchugasheva, A. Zemlyanov","doi":"10.1117/12.2256006","DOIUrl":"https://doi.org/10.1117/12.2256006","url":null,"abstract":"Experimental and theoretical study of the post-filamentation stage of focused high-power Ti:Sa laser pulses in air is presented. Angular divergence of the laser beam, as well as angular and spatial characteristics of specific spatially localized light structures, the post-filament channels (PFCs), under different initial focusing conditions and laser beam energy are investigated. We show that PFC angular divergence is always less than that of the whole laser beam and tends to decrease with laser pulse energy increase and beam focal length elongation.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115514018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have demonstrated an average output power of 10 W quasi-continuous-wave mid-infrared laser at 2.94 μm from a diode laser (LD) side-pumped Er-doped yttrium aluminum garnet (YAG) crystal. The Er:YAG crystal was composed of Er-doped (50% doped) (YAG) bonded to undoped YAG. The LD was operated at a repetition rate of 150Hz and a pulse-width of 300 μs. The optical-optical conversion efficiency and the slope efficiency were 5.6% and 9.1%, respectively. The slope efficiency was not saturation yet, a higher output power can be expected with a higher LD pump power and colder temperature of the Er:YAG crystal.
{"title":"2.94 μm diode side pumped ErYAG laser","authors":"Zhi Xu, Pengyuan Wang, Wanfa Liu, Yi-min Li, Baodong Gai, Y. Tan, Chunyang Jia, Jingwei Guo","doi":"10.1117/12.2257652","DOIUrl":"https://doi.org/10.1117/12.2257652","url":null,"abstract":"We have demonstrated an average output power of 10 W quasi-continuous-wave mid-infrared laser at 2.94 μm from a diode laser (LD) side-pumped Er-doped yttrium aluminum garnet (YAG) crystal. The Er:YAG crystal was composed of Er-doped (50% doped) (YAG) bonded to undoped YAG. The LD was operated at a repetition rate of 150Hz and a pulse-width of 300 μs. The optical-optical conversion efficiency and the slope efficiency were 5.6% and 9.1%, respectively. The slope efficiency was not saturation yet, a higher output power can be expected with a higher LD pump power and colder temperature of the Er:YAG crystal.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122660782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Yacoby, K. Waichman, O. Sadot, B. Barmashenko, S. Rosenwaks
Scaling-up flowing-gas diode pumped alkali lasers (DPALs) to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. We examined the influence of the flow velocity and Mach number M on the maximum achievable power of subsonic and supersonic lasers. For Cs DPAL devices with M = 0.2 - 3 the output power increases with increasing M by only ~20%, implying that supersonic operation mode has only small advantage over subsonic. In contrast, the power achievable in K DPALs strongly depends on M. The output power increases by ~100% when M increases from 0.2 to 4, showing a considerable advantage of supersonic device over subsonic. The reason for the increase of the power with M in both Cs and K DPALs is the decrease of the temperature due to the gas expansion in the flow system. However, the power increase for K lasers is much larger than for the Cs devices mainly due to the much smaller fine-structure splitting of the 2P states (~58 cm-1 for K and ~554 cm-1 for Cs), which results in a much stronger effect of the temperature decrease in K DPALs. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry. However, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.
{"title":"3D CFD modeling of flowing-gas DPALs with different pumping geometries and various flow velocities","authors":"E. Yacoby, K. Waichman, O. Sadot, B. Barmashenko, S. Rosenwaks","doi":"10.1117/12.2256026","DOIUrl":"https://doi.org/10.1117/12.2256026","url":null,"abstract":"Scaling-up flowing-gas diode pumped alkali lasers (DPALs) to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. We examined the influence of the flow velocity and Mach number M on the maximum achievable power of subsonic and supersonic lasers. For Cs DPAL devices with M = 0.2 - 3 the output power increases with increasing M by only ~20%, implying that supersonic operation mode has only small advantage over subsonic. In contrast, the power achievable in K DPALs strongly depends on M. The output power increases by ~100% when M increases from 0.2 to 4, showing a considerable advantage of supersonic device over subsonic. The reason for the increase of the power with M in both Cs and K DPALs is the decrease of the temperature due to the gas expansion in the flow system. However, the power increase for K lasers is much larger than for the Cs devices mainly due to the much smaller fine-structure splitting of the 2P states (~58 cm-1 for K and ~554 cm-1 for Cs), which results in a much stronger effect of the temperature decrease in K DPALs. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry. However, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"10254 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129304510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Nowak, T. Suganuma, Y. Kurosawa, T. Ohta, Y. Kawasuji, H. Nakarai, Takashi Saitou, J. Fujimoto, H. Mizoguchi, A. Sumitani, A. Endo
Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.
{"title":"QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source","authors":"K. Nowak, T. Suganuma, Y. Kurosawa, T. Ohta, Y. Kawasuji, H. Nakarai, Takashi Saitou, J. Fujimoto, H. Mizoguchi, A. Sumitani, A. Endo","doi":"10.1117/12.2256003","DOIUrl":"https://doi.org/10.1117/12.2256003","url":null,"abstract":"Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129366162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Wiedemann, J. Lorenz, J. Radtke, C. Kebschull, A. Horstmann, E. Stoll
High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is therefore possible to provide an estimation of the detection rates of the non-cataloged population of space debris.
{"title":"Space debris: modeling and detectability","authors":"C. Wiedemann, J. Lorenz, J. Radtke, C. Kebschull, A. Horstmann, E. Stoll","doi":"10.1117/12.2257479","DOIUrl":"https://doi.org/10.1117/12.2257479","url":null,"abstract":"High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is therefore possible to provide an estimation of the detection rates of the non-cataloged population of space debris.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130521279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.
{"title":"High power diode and solid state lasers","authors":"H. Eichler, H. Fritsche, O. Lux, S. Strohmaier","doi":"10.1117/12.2262990","DOIUrl":"https://doi.org/10.1117/12.2262990","url":null,"abstract":"Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121179514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical solitons and their interaction with other solitons or with dispersive wave shed by solitons under perturbation constitute a versatile experimental and theoretical platform for studying the nature of complex dynamics occurring in laser cavities [1-3] in addition to common physical principles in terms with a range of other nonlinear, non-equilibrium, coupled systems outside of optics. A soliton is energy localization of dissipative structures of electric field which evolves from noise in laser cavities. It is stationary solution of nonlinear Schrödinger equation that balances the effects of chromatic dispersion with nonlinearity during propagation in a medium. Strong pumping in soliton regime drives a laser system in to a multi pulsing self-organized system. Such a system in fiber medium is ubiquitous and always attracts research interest. Multi-soliton pulses or soliton bunches generated from different systems through a long range interaction due to acoustic waves generated from electrostriction and its perturbation induced refractive index change of the medium by a propagating pulse on the next pulse in the neighborhood. A short range interaction can occur as a result of pulses overlapping, acoustoptic interaction or it can occur when dispersive waves at the tail of pulses interact with a back ground field or with solitons near to its.
{"title":"Noise induced creation and annihilation of solitons in dispersion managed fiber oscillators","authors":"T. Teamir, F. Ilday","doi":"10.1117/12.2256324","DOIUrl":"https://doi.org/10.1117/12.2256324","url":null,"abstract":"Optical solitons and their interaction with other solitons or with dispersive wave shed by solitons under perturbation constitute a versatile experimental and theoretical platform for studying the nature of complex dynamics occurring in laser cavities [1-3] in addition to common physical principles in terms with a range of other nonlinear, non-equilibrium, coupled systems outside of optics. A soliton is energy localization of dissipative structures of electric field which evolves from noise in laser cavities. It is stationary solution of nonlinear Schrödinger equation that balances the effects of chromatic dispersion with nonlinearity during propagation in a medium. Strong pumping in soliton regime drives a laser system in to a multi pulsing self-organized system. Such a system in fiber medium is ubiquitous and always attracts research interest. Multi-soliton pulses or soliton bunches generated from different systems through a long range interaction due to acoustic waves generated from electrostriction and its perturbation induced refractive index change of the medium by a propagating pulse on the next pulse in the neighborhood. A short range interaction can occur as a result of pulses overlapping, acoustoptic interaction or it can occur when dispersive waves at the tail of pulses interact with a back ground field or with solitons near to its.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126999340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. A. Mikheyev, Jiande Han, A. Clark, C. Sanderson, M. Heaven
The results of experiments with a dielectric barrier discharge (DBD) are presented, where the production of metastable argon atoms was studied. The recently proposed optically pumped all-rare-gas laser (OPRGL) utilizes metastable atoms of heavier rare gases as lasing species. The required number density of metastables for efficient laser operation is 1012÷1013 cm-3 in an atmospheric pressure of He buffer gas. Recent experiments had shown that such densities are easily produced in a nanosecond pulsed discharge, even at pressures larger than atmospheric, but problems appear when one is trying to produce them in a CW regime. The reason for difficulties in the CW production of metastables at an atmospheric pressure seems to be the low value of the E/N parameter (<5-6 Td). In our experiments a 20 KHz DBD in 2-5% Ar mixture with He at an atmospheric pressure was studied. [Ar(1s5)] number density of the order of 1012 cm-3 was readily achieved. Temporal behavior of [Ar(1s5)] throughout the DBD cycle was obtained. The results demonstrate the feasibility of DBDs for OPRGL development.
{"title":"Production of Ar metastables in a dielectric barrier discharge","authors":"P. A. Mikheyev, Jiande Han, A. Clark, C. Sanderson, M. Heaven","doi":"10.1117/12.2256172","DOIUrl":"https://doi.org/10.1117/12.2256172","url":null,"abstract":"The results of experiments with a dielectric barrier discharge (DBD) are presented, where the production of metastable argon atoms was studied. The recently proposed optically pumped all-rare-gas laser (OPRGL) utilizes metastable atoms of heavier rare gases as lasing species. The required number density of metastables for efficient laser operation is 1012÷1013 cm-3 in an atmospheric pressure of He buffer gas. Recent experiments had shown that such densities are easily produced in a nanosecond pulsed discharge, even at pressures larger than atmospheric, but problems appear when one is trying to produce them in a CW regime. The reason for difficulties in the CW production of metastables at an atmospheric pressure seems to be the low value of the E/N parameter (<5-6 Td). In our experiments a 20 KHz DBD in 2-5% Ar mixture with He at an atmospheric pressure was studied. [Ar(1s5)] number density of the order of 1012 cm-3 was readily achieved. Temporal behavior of [Ar(1s5)] throughout the DBD cycle was obtained. The results demonstrate the feasibility of DBDs for OPRGL development.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125419506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}