Fault diagnosis and recovery in MEMS inertial navigation system using information filters and Gaussian processes

I. Vitanov, N. Aouf
{"title":"Fault diagnosis and recovery in MEMS inertial navigation system using information filters and Gaussian processes","authors":"I. Vitanov, N. Aouf","doi":"10.1109/MED.2014.6961357","DOIUrl":null,"url":null,"abstract":"An integrated navigation system (INS) on a vehicle platform such as a quadrotor UAV is an example of a multisensor system, wherein data streams coming from different sensors are combined to bring about improved situational awareness. This paper examines the implementation of two related approaches to distributed estimation and fault diagnosis in a multi-sensor INS: a centralised and decentralised (federated) Kalman filter in information form. We adapt a designated observer scheme (DOS), i.e., filter bank approach, to make use of local filter nodes coupled to individual inertial sensors in order to achieve detection and isolation of faults. The centralised filter implemented is based on the concept of adaptive measurement fusion, which allows for adaptive estimation of the measurement covariance. We extend this feature to the decentralised design and compare the two. A further contribution is the use of Gaussian processes (GPs) in tracking INS sensor deviations from model-predicted values and using this information for fault recovery in the case of the decentralised filter. Initial simulation results show that the decentralised filter is more robust in the face of multiple faults, even as the centralised information filter provides slightly higher quality estimation.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An integrated navigation system (INS) on a vehicle platform such as a quadrotor UAV is an example of a multisensor system, wherein data streams coming from different sensors are combined to bring about improved situational awareness. This paper examines the implementation of two related approaches to distributed estimation and fault diagnosis in a multi-sensor INS: a centralised and decentralised (federated) Kalman filter in information form. We adapt a designated observer scheme (DOS), i.e., filter bank approach, to make use of local filter nodes coupled to individual inertial sensors in order to achieve detection and isolation of faults. The centralised filter implemented is based on the concept of adaptive measurement fusion, which allows for adaptive estimation of the measurement covariance. We extend this feature to the decentralised design and compare the two. A further contribution is the use of Gaussian processes (GPs) in tracking INS sensor deviations from model-predicted values and using this information for fault recovery in the case of the decentralised filter. Initial simulation results show that the decentralised filter is more robust in the face of multiple faults, even as the centralised information filter provides slightly higher quality estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息滤波和高斯过程的MEMS惯性导航系统故障诊断与恢复
四旋翼无人机等车辆平台上的集成导航系统(INS)是多传感器系统的一个例子,其中来自不同传感器的数据流被组合以提高态势感知能力。本文研究了多传感器惯性控制系统中分布式估计和故障诊断的两种相关方法的实现:信息形式的集中和分散(联邦)卡尔曼滤波器。我们采用指定观测器方案(DOS),即滤波器组方法,利用耦合到单个惯性传感器的局部滤波器节点来实现故障的检测和隔离。实现的集中滤波器基于自适应测量融合的概念,允许自适应估计测量协方差。我们将这一特性扩展到分散式设计中,并对两者进行比较。进一步的贡献是使用高斯过程(GPs)来跟踪INS传感器与模型预测值的偏差,并在分散滤波器的情况下使用该信息进行故障恢复。初步仿真结果表明,尽管集中式信息滤波器提供的估计质量略高,但分散式滤波器在面对多个故障时具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online adaptive geometry predictor of aquaculture fish-nets Mathematical study of the global dynamics of a concave gene expression model Placement of fixed modes by decentralised output feedback control Identification and switching quasi-LPV control of a four wheeled omnidirectional robot Robust anomaly detection in dynamic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1