Hyperspectral Image Classification for Agricultural Applications

B. Vaishnavi, Anvitha Pamidighantam, A. Hema, V. R. Syam
{"title":"Hyperspectral Image Classification for Agricultural Applications","authors":"B. Vaishnavi, Anvitha Pamidighantam, A. Hema, V. R. Syam","doi":"10.1109/ICEARS53579.2022.9751902","DOIUrl":null,"url":null,"abstract":"The purpose of Hyperspectral image (HSI) classification is for analyzing the remotely sensed images. The need of Convolutional neural network (CNN) is that it is the most frequently worn deep learning method to process the visual data. CNN is required for HSI classification which is also seen in new projects. The 2D CNN mechanisms are widely used. Here, we have proposed a 2-D CNN model along with Support Vector Machine (SVM) and Random Forest classifies for HSI classification. To test the performance of this approach, experiments are performed over Indian Pines, University of Pavia, and Salinas Scene along with WHU-Hi-LongKou, WHU-Hi-HanChuan, and WHU-Hi-HongHu remote sensing data sets. These datasets are used for crop images classification.","PeriodicalId":252961,"journal":{"name":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEARS53579.2022.9751902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The purpose of Hyperspectral image (HSI) classification is for analyzing the remotely sensed images. The need of Convolutional neural network (CNN) is that it is the most frequently worn deep learning method to process the visual data. CNN is required for HSI classification which is also seen in new projects. The 2D CNN mechanisms are widely used. Here, we have proposed a 2-D CNN model along with Support Vector Machine (SVM) and Random Forest classifies for HSI classification. To test the performance of this approach, experiments are performed over Indian Pines, University of Pavia, and Salinas Scene along with WHU-Hi-LongKou, WHU-Hi-HanChuan, and WHU-Hi-HongHu remote sensing data sets. These datasets are used for crop images classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
农业应用的高光谱图像分类
高光谱影像分类的目的是对遥感影像进行分析。卷积神经网络(CNN)的需求在于它是最常用的深度学习方法来处理视觉数据。HSI分类需要CNN,这在新项目中也可以看到。二维CNN机构的应用非常广泛。在这里,我们提出了一个二维CNN模型以及支持向量机(SVM)和随机森林分类器用于HSI分类。为了测试该方法的性能,在Indian Pines, Pavia大学和Salinas Scene以及WHU-Hi-LongKou, WHU-Hi-HanChuan和WHU-Hi-HongHu遥感数据集上进行了实验。这些数据集用于农作物图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Solar Tracker Using Micro-controller "Core Strength" of Dance Lala Training Considering the Body Motion Tracking Video and Predictive Model Textile Antenna –Structure, Material and Applications Automated Classification of Atherosclerosis in Coronary Computed Tomography Angiography Images Based on Radiomics Study Using Automatic Machine Learning Cryptocurrency Exchange Rate Prediction using ARIMA Model on Real Time Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1