Comparative Study of Short-term Electric Load Forecasting: Case Study EVNHCMC

N. T. Dung, T. T. Hà, N. Phuong
{"title":"Comparative Study of Short-term Electric Load Forecasting: Case Study EVNHCMC","authors":"N. T. Dung, T. T. Hà, N. Phuong","doi":"10.1109/GTSD.2018.8595514","DOIUrl":null,"url":null,"abstract":"Short-term load forecasting (STLF) plays an important role in building business strategies and ensuring reliability and safe operation of any electric power system. There are many different methods used for short-term forecasting, including regression models, time series, neural networks, expert systems, fuzzy logic, machine learning, and statistical algorithms. There are always debates about which algorithms are the best for electric load forecasting. In this paper, we compared the SVR (Support Vector Regression), NN (Neural Network) and RFR (Random Forest Regression) algorithms, based on the dataset of EVNHCMC to find out a suitable STLF for the dataset.","PeriodicalId":344653,"journal":{"name":"2018 4th International Conference on Green Technology and Sustainable Development (GTSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Green Technology and Sustainable Development (GTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GTSD.2018.8595514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Short-term load forecasting (STLF) plays an important role in building business strategies and ensuring reliability and safe operation of any electric power system. There are many different methods used for short-term forecasting, including regression models, time series, neural networks, expert systems, fuzzy logic, machine learning, and statistical algorithms. There are always debates about which algorithms are the best for electric load forecasting. In this paper, we compared the SVR (Support Vector Regression), NN (Neural Network) and RFR (Random Forest Regression) algorithms, based on the dataset of EVNHCMC to find out a suitable STLF for the dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短期电力负荷预测的比较研究:以EVNHCMC为例
短期负荷预测对于制定电力系统的经营战略,保证电力系统的可靠性和安全运行具有重要的作用。有许多不同的方法用于短期预测,包括回归模型、时间序列、神经网络、专家系统、模糊逻辑、机器学习和统计算法。对于哪种算法最适合电力负荷预测,一直存在争议。本文在EVNHCMC数据集的基础上,对支持向量回归(SVR)、神经网络(NN)和随机森林回归(RFR)算法进行比较,找出适合该数据集的STLF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on the Applicability of Influence Coefficient Method Combined with Vector Analysis in Dynamic Balancing Rigid Rotor Using Flexible Supports Program for Designing Planar Cam Mechanisms" Enantio-selective Crystallization via a Kinetic and Thermodynamic Hybrid Process A Study on Change of the Shape and Size of the Minichannel Evaporators to Enhance the Cooling Capacity of the CO&underscore;2 Air Conditioning Cycle Comparative Structural and Non-structural Properties of Ultra High-performance Steel-fiber-reinforced Concretes and High-Performance Steel-fiber-reinforced Concretes*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1