Comparison of Reconstruction Algorithm on Sparse Representation based Classification (SRC) for Face Recognition

S. I. Lestariningati, A. B. Suksmono, Koredianto Usman, Ian Yoseph Matheus Edward, Dewi Iswaratika
{"title":"Comparison of Reconstruction Algorithm on Sparse Representation based Classification (SRC) for Face Recognition","authors":"S. I. Lestariningati, A. B. Suksmono, Koredianto Usman, Ian Yoseph Matheus Edward, Dewi Iswaratika","doi":"10.1109/TSSA56819.2022.10063884","DOIUrl":null,"url":null,"abstract":"Sparse representation based Classification (SRC) has gained the attention of pattern recognition and computer vision researchers, especially researchers working on face recognition. On SRC's algorithm, it is necessary to find a solution to an optimization problem to recover $\\mathbf{x}$ from the equation $\\mathbf{y}$ = Ax. Only a few studies reported the reconstruction of the signals on SRC's algorithm. Therefore, this paper studies the comparison of OMP, LASSO, and CVX to help the readers understand the reconstruction algorithm's effect on SRC. The simulation result is that LASSO and CVX algorithms have the same recognition rate, but LASSO can compute twice faster as CVX. On the other hand, the OMP algorithm can give the highest recognition rate on a specific dimension of the image with a faster computation time than LASSO.","PeriodicalId":164665,"journal":{"name":"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSA56819.2022.10063884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse representation based Classification (SRC) has gained the attention of pattern recognition and computer vision researchers, especially researchers working on face recognition. On SRC's algorithm, it is necessary to find a solution to an optimization problem to recover $\mathbf{x}$ from the equation $\mathbf{y}$ = Ax. Only a few studies reported the reconstruction of the signals on SRC's algorithm. Therefore, this paper studies the comparison of OMP, LASSO, and CVX to help the readers understand the reconstruction algorithm's effect on SRC. The simulation result is that LASSO and CVX algorithms have the same recognition rate, but LASSO can compute twice faster as CVX. On the other hand, the OMP algorithm can give the highest recognition rate on a specific dimension of the image with a faster computation time than LASSO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏表示分类(SRC)的人脸识别重构算法比较
基于稀疏表示的分类(SRC)已经受到模式识别和计算机视觉研究者,特别是人脸识别研究者的关注。在SRC算法中,从方程$\mathbf{y}$ = Ax中恢复$\mathbf{x}$需要找到一个优化问题的解。只有少数研究报道了SRC算法对信号的重建。因此,本文研究了OMP、LASSO和CVX的对比,帮助读者了解重构算法对SRC的影响。仿真结果表明,LASSO和CVX算法具有相同的识别率,但LASSO的计算速度比CVX快两倍。另一方面,OMP算法对图像特定维度的识别率最高,且计算时间比LASSO更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a compact antenna and rectifier for a dual band rectenna operating at 2.4 GHz and 5.8 GHz Road Segmentation with U-Net Architecture Using Jetson AGX Xavier For Autonomous Vehicle Speed Control System of BLDC Motor Based on DSP TMS320F28027F Design and Control of Swerve Drive Mechanism for Autonomous Mobile Robot Application of Certainty Factor Method to Diagnose Venereal Diseases Using Confusion Matrix for Multi-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1