{"title":"enBudget: A Run-Time Adaptive Predictive Energy-Budgeting scheme for energy-aware Motion Estimation in H.264/MPEG-4 AVC video encoder","authors":"M. Shafique, L. Bauer, J. Henkel","doi":"10.1109/DATE.2010.5457093","DOIUrl":null,"url":null,"abstract":"The limited energy resources in portable multimedia devices require the reduction of encoding complexity. The complex Motion Estimation (ME) scheme of H.264/MPEG-4 AVC accounts for a major part of the encoder energy. In this paper we present a Run-Time Adaptive Predictive Energy Budgeting (enBudget) scheme for energy-aware ME that predicts the energy budget for different video frames and different Macroblocks (MBs) in an adaptive manner considering the run-time changing scenarios of available energy, video frame characteristics, and user-defined coding constraints while keeping a good video quality. It assigns different Energy-Quality Classes to different video frames and fine-tunes at MB level depending upon the predictive energy quota in order to cope with above-mentioned run-time unpredictable scenarios. Compared to UMHexagonS, EPZS, and FastME, our enBudget scheme for energy-aware ME achieves an energy saving of up to 93%, 90%, 88% (average 88%, 77%, 66%), respectively. It suffers from an average Peak Signal to Noise Ratio (PSNR) loss of 0.29 dB compared to Full Search. We also demonstrate that enBudget is equally beneficial to various other state-of-the-art fast adaptive MEs (e.g.). We have evaluated our scheme for ASIC and various FPGAs.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
The limited energy resources in portable multimedia devices require the reduction of encoding complexity. The complex Motion Estimation (ME) scheme of H.264/MPEG-4 AVC accounts for a major part of the encoder energy. In this paper we present a Run-Time Adaptive Predictive Energy Budgeting (enBudget) scheme for energy-aware ME that predicts the energy budget for different video frames and different Macroblocks (MBs) in an adaptive manner considering the run-time changing scenarios of available energy, video frame characteristics, and user-defined coding constraints while keeping a good video quality. It assigns different Energy-Quality Classes to different video frames and fine-tunes at MB level depending upon the predictive energy quota in order to cope with above-mentioned run-time unpredictable scenarios. Compared to UMHexagonS, EPZS, and FastME, our enBudget scheme for energy-aware ME achieves an energy saving of up to 93%, 90%, 88% (average 88%, 77%, 66%), respectively. It suffers from an average Peak Signal to Noise Ratio (PSNR) loss of 0.29 dB compared to Full Search. We also demonstrate that enBudget is equally beneficial to various other state-of-the-art fast adaptive MEs (e.g.). We have evaluated our scheme for ASIC and various FPGAs.