Mining User Opinion Influences on Twitter Social Network: Find that Friend who Leads your Opinion Using Bayesian Method and a New Emotional PageRank Algorithm

Armielle Noulapeu Ngaffo, Walid El Ayeb, Z. Choukair
{"title":"Mining User Opinion Influences on Twitter Social Network: Find that Friend who Leads your Opinion Using Bayesian Method and a New Emotional PageRank Algorithm","authors":"Armielle Noulapeu Ngaffo, Walid El Ayeb, Z. Choukair","doi":"10.1109/IWCMC.2019.8766571","DOIUrl":null,"url":null,"abstract":"With about 326 million[1] monthly active users and many millions of tweets sent per day, Twitter is undoubtedly one of the social networks most requested[2] by users sharing opinions, and feelings about trends, events… As a result, how users influence their opinions mutually constitute a hot issue for researchers. Indeed, the study and the estimation of the opinion influence observed between Twitter users constitutes a rich opportunity for the adjustment of services/products offered involved in the service discovery process. In this paper we propose an approach to determine the target user's Twitter friends from whom the target user opinion is influenced by. Our model is based on opinion mining of retweets and target user's Favorites markings from which we estimate the opinion influence using the Bayesian method combined with our EPR (Emotional PageRank) algorithm. The results obtained highlight our contribution compared to the standard PR (PageRank) algorithm.","PeriodicalId":363800,"journal":{"name":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","volume":"64 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCMC.2019.8766571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With about 326 million[1] monthly active users and many millions of tweets sent per day, Twitter is undoubtedly one of the social networks most requested[2] by users sharing opinions, and feelings about trends, events… As a result, how users influence their opinions mutually constitute a hot issue for researchers. Indeed, the study and the estimation of the opinion influence observed between Twitter users constitutes a rich opportunity for the adjustment of services/products offered involved in the service discovery process. In this paper we propose an approach to determine the target user's Twitter friends from whom the target user opinion is influenced by. Our model is based on opinion mining of retweets and target user's Favorites markings from which we estimate the opinion influence using the Bayesian method combined with our EPR (Emotional PageRank) algorithm. The results obtained highlight our contribution compared to the standard PR (PageRank) algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘用户意见对Twitter社交网络的影响:使用贝叶斯方法和新的情感PageRank算法找到引导你意见的朋友
Twitter拥有约3.26亿月活跃用户[1],每天发送数百万条推文,无疑是用户分享观点和对趋势、事件感受最多的社交网络之一[2],因此,用户如何相互影响他们的观点是研究人员关注的热点问题。事实上,对Twitter用户之间观察到的意见影响的研究和估计,为调整服务发现过程中提供的服务/产品提供了丰富的机会。在本文中,我们提出了一种方法来确定目标用户的Twitter朋友,目标用户的意见受到他们的影响。我们的模型基于对转发的意见挖掘和目标用户的收藏标记,我们使用贝叶斯方法结合我们的EPR (Emotional PageRank)算法来估计意见的影响。与标准PR (PageRank)算法相比,获得的结果突出了我们的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Method to Physical Layer Security of an Amplify-and-Forward Spectrum Sensing in Cognitive Radio Networks: Secondary User to Relay Experimental Performance Evaluation of TCP Over an Integrated Satellite-Terrestrial Network Environment Drone Disrupted Denial of Service Attack (3DOS): Towards an Incident Response and Forensic Analysis of Remotely Piloted Aerial Systems (RPASs) Mobility Traffic Model Based on Combination of Multiple Transportation Forms in the Smart City Exploiting Energy Efficient Routing protocols for Void Hole Alleviation in IoT enabled Underwater WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1