SCARE: Side-Channel Analysis Based Reverse Engineering for Post-Silicon Validation

Xinmu Wang, S. Narasimhan, A. Krishna, S. Bhunia
{"title":"SCARE: Side-Channel Analysis Based Reverse Engineering for Post-Silicon Validation","authors":"Xinmu Wang, S. Narasimhan, A. Krishna, S. Bhunia","doi":"10.1109/VLSID.2012.88","DOIUrl":null,"url":null,"abstract":"Reverse Engineering (RE) has been historically considered as a powerful approach to understand electronic hardware in order to gain competitive intelligence or accomplish piracy. In recent years, it has also been looked at as a way to authenticate hardware intellectual properties in the court of law. In this paper, we propose a beneficial role of RE in post-silicon validation of integrated circuits (IC) with respect to IC functionality, reliability and integrity. Unlike traditional destructive RE approaches, we propose a fast non-destructive side-channel analysis approach that can hierarchically extract structural information from an IC through its transient current signature. Such a top-down side-channel analysis approach is capable of reliably identifying pipeline stages and functional blocks. It is also suitable to distinguish sequential elements from combinational gates. For extraction of random logic structures (e.g. control blocks and finite state machines) we combine side-channel analysis with logic testing based Boolean function extraction. The proposed approach is amenable to automation, scalable, and can be applied as part of post-silicon validation process to verify that each IC implements exclusively the functionality described in the specification and is free from malicious modification or Trojan attacks. Simulation results on a pipelined DLX processor demonstrate the effectiveness of the proposed approach.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 25th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2012.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Reverse Engineering (RE) has been historically considered as a powerful approach to understand electronic hardware in order to gain competitive intelligence or accomplish piracy. In recent years, it has also been looked at as a way to authenticate hardware intellectual properties in the court of law. In this paper, we propose a beneficial role of RE in post-silicon validation of integrated circuits (IC) with respect to IC functionality, reliability and integrity. Unlike traditional destructive RE approaches, we propose a fast non-destructive side-channel analysis approach that can hierarchically extract structural information from an IC through its transient current signature. Such a top-down side-channel analysis approach is capable of reliably identifying pipeline stages and functional blocks. It is also suitable to distinguish sequential elements from combinational gates. For extraction of random logic structures (e.g. control blocks and finite state machines) we combine side-channel analysis with logic testing based Boolean function extraction. The proposed approach is amenable to automation, scalable, and can be applied as part of post-silicon validation process to verify that each IC implements exclusively the functionality described in the specification and is free from malicious modification or Trojan attacks. Simulation results on a pipelined DLX processor demonstrate the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于侧通道分析的后硅验证逆向工程
逆向工程(RE)历来被认为是了解电子硬件以获得竞争情报或完成盗版的有力方法。近年来,它也被视为在法庭上验证硬件知识产权的一种方式。在本文中,我们提出了RE在集成电路(IC)的功能,可靠性和完整性方面的后硅验证中的有益作用。与传统的破坏性重构方法不同,我们提出了一种快速的非破坏性侧信道分析方法,该方法可以通过IC的瞬态电流特征分层提取结构信息。这种自顶向下的边通道分析方法能够可靠地识别管道阶段和功能块。它也适用于区分顺序元件和组合门。对于随机逻辑结构(如控制块和有限状态机)的提取,我们将边信道分析与基于逻辑测试的布尔函数提取相结合。所提出的方法易于自动化,可扩展,并且可以作为后硅验证过程的一部分应用,以验证每个IC是否完全实现了规范中描述的功能,并且没有恶意修改或特洛伊木马攻击。在流水线DLX处理器上的仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two Graph Based Circuit Simulator for PDE-Electrical Analogy Tutorial T8A: Designing Silicon-Photonic Communication Networks for Manycore Systems Efficient Online RTL Debugging Methodology for Logic Emulation Systems Low-Overhead Maximum Power Point Tracking for Micro-Scale Solar Energy Harvesting Systems A Framework for TSV Serialization-aware Synthesis of Application Specific 3D Networks-on-Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1