Novel Algorithm for Incremental L1-Norm Principal-Component Analysis

M. Dhanaraj, Panos P. Markopoulos
{"title":"Novel Algorithm for Incremental L1-Norm Principal-Component Analysis","authors":"M. Dhanaraj, Panos P. Markopoulos","doi":"10.23919/EUSIPCO.2018.8553239","DOIUrl":null,"url":null,"abstract":"L1-norm Principal-Component Analysis (L1-PCA) has been shown to exhibit sturdy resistance against outliers among the processed data. In this work, we propose L1-IPCA: an algorithm for incremental L1-PCA, appropriate for big-data and streaming-data applications. The proposed algorithm updates the calculated L1-norm principal components as new data points arrive, conducting a sequence of computationally efficient bit-flipping iterations. Our experimental studies on subspace estimation, image conditioning, and video foreground extraction illustrate that the proposed algorithm attains remarkable outlier resistance at low computational cost.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

L1-norm Principal-Component Analysis (L1-PCA) has been shown to exhibit sturdy resistance against outliers among the processed data. In this work, we propose L1-IPCA: an algorithm for incremental L1-PCA, appropriate for big-data and streaming-data applications. The proposed algorithm updates the calculated L1-norm principal components as new data points arrive, conducting a sequence of computationally efficient bit-flipping iterations. Our experimental studies on subspace estimation, image conditioning, and video foreground extraction illustrate that the proposed algorithm attains remarkable outlier resistance at low computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增量l1 -范数主成分分析的新算法
l1 -范数主成分分析(L1-PCA)已被证明对处理数据中的异常值具有强大的抵抗力。在这项工作中,我们提出了L1-IPCA:一种适用于大数据和流数据应用的增量L1-PCA算法。该算法在新数据点到达时更新计算的l1范数主成分,进行一系列计算效率高的位翻转迭代。我们在子空间估计、图像调理和视频前景提取方面的实验研究表明,该算法以较低的计算成本获得了显著的离群值阻力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1