Automatic falls detection in hospital-room context

A. Mecocci, F. Micheli, C. Zoppetti, Andrea Baghini
{"title":"Automatic falls detection in hospital-room context","authors":"A. Mecocci, F. Micheli, C. Zoppetti, Andrea Baghini","doi":"10.1109/COGINFOCOM.2016.7804537","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for the monitoring of hospitalized people, including fall detection capabilities, using an environmentally mounted depth imaging sensor. The purpose is to characterize the fall event, depending on the location of the person when the fall event happens. In particular, we distinguish two basic starting point conditions: fall from standing position (e.g. due to blood pressure failure) and fall out of bed (e.g. due to agitation). To achieve this goal, we exploit the context information to adaptively extract the person's silhouette and then reliably tracking the trajectory. If a fall occurs, the system is capable of recognize this event on the basis of the inferred starting condition. The current implementation has been tested on available online datasets and on a self-made dedicated dataset. In this latter dataset, we have included falls from standing position and falls out of bed, even in presence of occlusions.","PeriodicalId":440408,"journal":{"name":"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINFOCOM.2016.7804537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a framework for the monitoring of hospitalized people, including fall detection capabilities, using an environmentally mounted depth imaging sensor. The purpose is to characterize the fall event, depending on the location of the person when the fall event happens. In particular, we distinguish two basic starting point conditions: fall from standing position (e.g. due to blood pressure failure) and fall out of bed (e.g. due to agitation). To achieve this goal, we exploit the context information to adaptively extract the person's silhouette and then reliably tracking the trajectory. If a fall occurs, the system is capable of recognize this event on the basis of the inferred starting condition. The current implementation has been tested on available online datasets and on a self-made dedicated dataset. In this latter dataset, we have included falls from standing position and falls out of bed, even in presence of occlusions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在医院病房环境中的自动跌倒检测
本文提出了一个框架,用于监测住院人员,包括跌倒检测能力,使用环境安装深度成像传感器。目的是根据坠落事件发生时人的位置来描述坠落事件的特征。特别是,我们区分了两种基本的起点条件:从站立位置摔倒(例如,由于血压衰竭)和从床上摔下来(例如,由于激动)。为了实现这一目标,我们利用上下文信息自适应提取人的轮廓,然后可靠地跟踪轨迹。如果发生坠落,系统能够根据推断的起始条件识别该事件。目前的实现已经在可用的在线数据集和自制的专用数据集上进行了测试。在后一个数据集中,我们包括了从站立位置跌倒和从床上跌倒,即使存在闭塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
When the "truth" can (softly) hurt. Effects of political orientation on different forms of parody How cognitive infocommunications play a critical role in shaping the future of forensic sciences defining forensic cognitive infocommunications Compassion, empathy and sympathy expression features in affective robotics Can we detect speakers' empathy?: A real-life case study Analyzing the expression of annoyance during phone calls to complaint services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1