Associative motion generation for humanoid robots based on analogy with indication

Satona Motomura, Shohei Kato, H. Itoh
{"title":"Associative motion generation for humanoid robots based on analogy with indication","authors":"Satona Motomura, Shohei Kato, H. Itoh","doi":"10.1109/MHS.2009.5352007","DOIUrl":null,"url":null,"abstract":"We describe a method of generating new motions associatively from unfamiliar indications. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis (NLPCA) and Jordan recurrent neural network (JRNN). First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using NLPCA. Last, the robot generates a new motion through calculation by JRNN using the associative values. Experimental results demonstrated that our method enabled a humanoid robot, KHR-2HV, to associatively generate some kinds of motion depending on given unfamiliar indications.","PeriodicalId":344667,"journal":{"name":"2009 International Symposium on Micro-NanoMechatronics and Human Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Micro-NanoMechatronics and Human Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2009.5352007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a method of generating new motions associatively from unfamiliar indications. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis (NLPCA) and Jordan recurrent neural network (JRNN). First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using NLPCA. Last, the robot generates a new motion through calculation by JRNN using the associative values. Experimental results demonstrated that our method enabled a humanoid robot, KHR-2HV, to associatively generate some kinds of motion depending on given unfamiliar indications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于指示类比的仿人机器人联想运动生成
我们描述了一种从不熟悉的指示联想产生新动作的方法。联想运动生成系统由非线性主成分分析(NLPCA)和Jordan递归神经网络(JRNN)两个神经网络组成。首先,系统使用训练数据学习指示和动作之间的对应关系。其次,使用NLPCA提取关联值,用于从不熟悉的指示中关联新运动。最后,通过JRNN算法计算机器人的关联值,生成新的运动。实验结果表明,我们的方法使类人机器人KHR-2HV能够根据给定的不熟悉的指示联想地产生某些类型的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mesoscale-object handling by temperature modulation of surface stresses Three dimensional bipedal walking locomotion using dynamic passivization of joint control Wheelchair driving control with sway suppression of passenger's posture and evaluation of comfortable ride by emotional sweating Risk management system based on uncertainty estimation by multi-agent Functional shRNA expression system with reduced off-target effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1