Hierarchical Affordance Discovery using Intrinsic Motivation

A. Manoury, S. Nguyen, Cédric Buche
{"title":"Hierarchical Affordance Discovery using Intrinsic Motivation","authors":"A. Manoury, S. Nguyen, Cédric Buche","doi":"10.1145/3349537.3351898","DOIUrl":null,"url":null,"abstract":"To be capable of life-long learning in a real-life environment, robots have to tackle multiple challenges. Being able to relate physical properties they may observe in their environment to possible interactions they may have is one of them. This skill, named affordance learning, is strongly related to embodiment and is mastered through each person's development: each individual learns affordances differently through their own interactions with their surroundings. Current methods for affordance learning usually use either fixed actions to learn these affordances or focus on static setups involving a robotic arm to be operated. In this article, we propose an algorithm using intrinsic motivation to guide the learning of affordances for a mobile robot. This algorithm is capable to autonomously discover, learn and adapt interrelated affordances without pre-programmed actions. Once learned, these affordances may be used by the algorithm to plan sequences of actions in order to perform tasks of various difficulties. We then present one experiment and analyse our system before comparing it with other approaches from reinforcement learning and affordance learning.","PeriodicalId":188834,"journal":{"name":"Proceedings of the 7th International Conference on Human-Agent Interaction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349537.3351898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

To be capable of life-long learning in a real-life environment, robots have to tackle multiple challenges. Being able to relate physical properties they may observe in their environment to possible interactions they may have is one of them. This skill, named affordance learning, is strongly related to embodiment and is mastered through each person's development: each individual learns affordances differently through their own interactions with their surroundings. Current methods for affordance learning usually use either fixed actions to learn these affordances or focus on static setups involving a robotic arm to be operated. In this article, we propose an algorithm using intrinsic motivation to guide the learning of affordances for a mobile robot. This algorithm is capable to autonomously discover, learn and adapt interrelated affordances without pre-programmed actions. Once learned, these affordances may be used by the algorithm to plan sequences of actions in order to perform tasks of various difficulties. We then present one experiment and analyse our system before comparing it with other approaches from reinforcement learning and affordance learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内在动机的分层功能发现
为了能够在现实环境中终身学习,机器人必须应对多种挑战。能够将他们在环境中观察到的物理特性与他们可能发生的相互作用联系起来就是其中之一。这种技能被称为可视性学习,与体现密切相关,并通过每个人的发展来掌握:每个人通过自己与周围环境的互动来学习不同的可视性。目前的可视性学习方法通常使用固定动作来学习这些可视性,或者专注于涉及操作机械臂的静态设置。在本文中,我们提出了一种使用内在动机来指导移动机器人的可视性学习的算法。该算法能够自主发现、学习和适应相互关联的启示,而无需预先编程的动作。一旦学习,这些启示可以被算法用来计划行动序列,以执行各种困难的任务。然后,我们提出了一个实验并分析了我们的系统,然后将其与强化学习和可视性学习的其他方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Design Method of the Virtual Teacher Are We Having Fun Yet?: Designing for Fun in Artificial Intelligence That Is Multicultural and Multiplatform A Conversational Robotic Approach to Dementia Symptoms: Measuring Its Effect on Older Adults Let Me Get To Know You Better: Can Interactions Help to Overcome Uncanny Feelings? Factors Influencing Empathic Behaviors for Virtual Agents: -Examining about the Effect of Embodiment-
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1