{"title":"[POSTER] Movable Spatial AR On-The-Go","authors":"Ahyun Lee, Joo-Haeng Lee, Jaehong Kim","doi":"10.1109/ISMAR.2015.55","DOIUrl":null,"url":null,"abstract":"We present a movable spatial augmented reality (SAR) system that can be easily installed in a user workspace. The proposed system aims to dynamically cover a wider projection area using a portable projector attached to a simple robotic device. It has a clear advantage than a conventional SAR scenario where, for example, a projector should be installe1d with a fixed projection area in the workspace. In the previous research [1], we proposed a data-driven kinematic control method for a movable SAR system. This method targets a SAR system integrated with a user-created robotic (UCR) device where an explicit kinematic configuration such as CAD model is unavailable. Our contribution in this paper is to show the feasibility of the data-driven control method by developing a practical application where dynamic change of projection area matters. We outline the control method and demonstrate an assembly guide example using a casually installed movable SAR system.","PeriodicalId":240196,"journal":{"name":"2015 IEEE International Symposium on Mixed and Augmented Reality","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2015.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present a movable spatial augmented reality (SAR) system that can be easily installed in a user workspace. The proposed system aims to dynamically cover a wider projection area using a portable projector attached to a simple robotic device. It has a clear advantage than a conventional SAR scenario where, for example, a projector should be installe1d with a fixed projection area in the workspace. In the previous research [1], we proposed a data-driven kinematic control method for a movable SAR system. This method targets a SAR system integrated with a user-created robotic (UCR) device where an explicit kinematic configuration such as CAD model is unavailable. Our contribution in this paper is to show the feasibility of the data-driven control method by developing a practical application where dynamic change of projection area matters. We outline the control method and demonstrate an assembly guide example using a casually installed movable SAR system.