A Hybrid Model for Globally Coherent Story Generation

Fangzhou Zhai, Vera Demberg, Pavel Shkadzko, Wei Shi, A. Sayeed
{"title":"A Hybrid Model for Globally Coherent Story Generation","authors":"Fangzhou Zhai, Vera Demberg, Pavel Shkadzko, Wei Shi, A. Sayeed","doi":"10.18653/v1/W19-3404","DOIUrl":null,"url":null,"abstract":"Automatically generating globally coherent stories is a challenging problem. Neural text generation models have been shown to perform well at generating fluent sentences from data, but they usually fail to keep track of the overall coherence of the story after a couple of sentences. Existing work that incorporates a text planning module succeeded in generating recipes and dialogues, but appears quite data-demanding. We propose a novel story generation approach that generates globally coherent stories from a fairly small corpus. The model exploits a symbolic text planning module to produce text plans, thus reducing the demand of data; a neural surface realization module then generates fluent text conditioned on the text plan. Human evaluation showed that our model outperforms various baselines by a wide margin and generates stories which are fluent as well as globally coherent.","PeriodicalId":296321,"journal":{"name":"Proceedings of the Second Workshop on Storytelling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Storytelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Automatically generating globally coherent stories is a challenging problem. Neural text generation models have been shown to perform well at generating fluent sentences from data, but they usually fail to keep track of the overall coherence of the story after a couple of sentences. Existing work that incorporates a text planning module succeeded in generating recipes and dialogues, but appears quite data-demanding. We propose a novel story generation approach that generates globally coherent stories from a fairly small corpus. The model exploits a symbolic text planning module to produce text plans, thus reducing the demand of data; a neural surface realization module then generates fluent text conditioned on the text plan. Human evaluation showed that our model outperforms various baselines by a wide margin and generates stories which are fluent as well as globally coherent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全局连贯故事生成的混合模型
自动生成全局连贯的故事是一个具有挑战性的问题。神经文本生成模型在从数据生成流畅的句子方面表现良好,但它们通常无法在几个句子之后跟踪故事的整体连贯性。包含文本规划模块的现有工作成功地生成了食谱和对话,但似乎对数据要求很高。我们提出了一种新颖的故事生成方法,从一个相当小的语料库中生成全局连贯的故事。该模型利用符号文本规划模块生成文本规划,减少了对数据的需求;然后,神经表面实现模块根据文本计划生成流畅的文本。人类评估表明,我们的模型在很大程度上优于各种基线,并生成流畅且全局连贯的故事。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Composing a Picture Book by Automatic Story Understanding and Visualization Personality Traits Recognition in Literary Texts A Simple Approach to Classify Fictional and Non-Fictional Genres Narrative Generation in the Wild: Methods from NaNoGenMo Using Functional Schemas to Understand Social Media Narratives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1